diff --git a/src/arch/x86/isa/decoder/one_byte_opcodes.isa b/src/arch/x86/isa/decoder/one_byte_opcodes.isa index b4aeece07..f7e6e3994 100644 --- a/src/arch/x86/isa/decoder/one_byte_opcodes.isa +++ b/src/arch/x86/isa/decoder/one_byte_opcodes.isa @@ -61,14 +61,15 @@ 0x1: decode OPCODE_OP_TOP5 { format WarnUnimpl { 0x00: decode OPCODE_OP_BOTTOM3 { + 0x4: TaggedOp::add({{AddI %0 %0}}, [rAl]); + 0x5: TaggedOp::add({{AddI %0 %0}}, [rAx]); 0x6: push_ES(); 0x7: pop_ES(); default: MultiOp::add( {{Add %0 %0 %1}}, OPCODE_OP_BOTTOM3, [[Eb,Gb],[Ev,Gv], - [Gb,Eb],[Gv,Ev], - [Al,Ib],[rAx,Iz]]); + [Gb,Eb],[Gv,Ev]]); } 0x01: decode OPCODE_OP_BOTTOM3 { 0x0: or_Eb_Gb(); @@ -125,15 +126,16 @@ 0x7: das(); } 0x06: decode OPCODE_OP_BOTTOM3 { - 0x0: xor_Eb_Gb(); - 0x1: xor_Ev_Gv(); - 0x2: xor_Gb_Eb(); - 0x3: xor_Gv_Ev(); - 0x4: xor_Al_Ib(); - 0x5: xor_rAX_Iz(); + 0x4: TaggedOp::xor({{XorI %0 %0}}, [rAl]); + 0x5: TaggedOp::xor({{XorI %0 %0}}, [rAx]); 0x6: M5InternalError::error( {{"Tried to execute the SS segment override prefix!"}}); 0x7: aaa(); + default: MultiOp::xor( + {{Xor %0 %0 %1}}, + OPCODE_OP_BOTTOM3, + [[Eb,Gb],[Ev,Gv], + [Gb,Eb],[Gv,Ev]]); } 0x07: decode OPCODE_OP_BOTTOM3 { 0x0: cmp_Eb_Gb(); diff --git a/src/arch/x86/isa/formats/formats.isa b/src/arch/x86/isa/formats/formats.isa index d763c05bc..f4e5c402f 100644 --- a/src/arch/x86/isa/formats/formats.isa +++ b/src/arch/x86/isa/formats/formats.isa @@ -95,6 +95,9 @@ //malfunction of the decode mechanism. ##include "error.isa" +//Include code to build up macro op instructions +##include "macroop.isa" + //Include a format which implements a batch of instructions which do the same //thing on a variety of inputs ##include "multi.isa" diff --git a/src/arch/x86/isa/formats/macroop.isa b/src/arch/x86/isa/formats/macroop.isa new file mode 100644 index 000000000..717103df1 --- /dev/null +++ b/src/arch/x86/isa/formats/macroop.isa @@ -0,0 +1,160 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2007 The Hewlett-Packard Development Company +// All rights reserved. +// +// Redistribution and use of this software in source and binary forms, +// with or without modification, are permitted provided that the +// following conditions are met: +// +// The software must be used only for Non-Commercial Use which means any +// use which is NOT directed to receiving any direct monetary +// compensation for, or commercial advantage from such use. Illustrative +// examples of non-commercial use are academic research, personal study, +// teaching, education and corporate research & development. +// Illustrative examples of commercial use are distributing products for +// commercial advantage and providing services using the software for +// commercial advantage. +// +// If you wish to use this software or functionality therein that may be +// covered by patents for commercial use, please contact: +// Director of Intellectual Property Licensing +// Office of Strategy and Technology +// Hewlett-Packard Company +// 1501 Page Mill Road +// Palo Alto, California 94304 +// +// Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. Redistributions +// in binary form must reproduce the above copyright notice, this list of +// conditions and the following disclaimer in the documentation and/or +// other materials provided with the distribution. Neither the name of +// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. No right of +// sublicense is granted herewith. Derivatives of the software and +// output created using the software may be prepared, but only for +// Non-Commercial Uses. Derivatives of the software may be shared with +// others provided: (i) the others agree to abide by the list of +// conditions herein which includes the Non-Commercial Use restrictions; +// and (ii) such Derivatives of the software include the above copyright +// notice to acknowledge the contribution from this software where +// applicable, this list of conditions and the disclaimer below. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: Gabe Black + +//////////////////////////////////////////////////////////////////// +// +// Instructions that do the same thing to multiple sets of arguments. +// + +output header {{ + + // Base class for most macroops, except ones that need to commit as + // they go. + class X86MacroInst : public X86StaticInst + { + protected: + const uint32_t numMicroOps; + + //Constructor. + X86MacroInst(const char *mnem, ExtMachInst _machInst, + uint32_t _numMicroOps) + : X86StaticInst(mnem, _machInst, No_OpClass), + numMicroOps(_numMicroOps) + { + assert(numMicroOps); + microOps = new StaticInstPtr[numMicroOps]; + flags[IsMacroOp] = true; + } + + ~X86MacroInst() + { + delete [] microOps; + } + + std::string generateDisassembly(Addr pc, + const SymbolTable *symtab) const; + + StaticInstPtr * microOps; + + StaticInstPtr fetchMicroOp(MicroPC microPC) + { + assert(microPC < numMicroOps); + return microOps[microPC]; + } + + %(BasicExecPanic)s + }; + + // Base class for macroops which commit as they go. This is for + // instructions which can be partially completed like those with the + // rep prefix. This prevents those instructions from overflowing + // buffers with uncommitted microops. + class X86RollingMacroInst : public X86MacroInst + { + protected: + //Constructor. + X86RollingMacroInst(const char *mnem, ExtMachInst _machInst, + uint32_t _numMicroOps) + : X86MacroInst(mnem, _machInst, numMicroOps) + {} + }; +}}; + +// Basic instruction class constructor template. +def template MacroConstructor {{ + inline %(class_name)s::%(class_name)s(ExtMachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst, %(num_micro_ops)s) + { + %(constructor)s; + //alloc_micro_ops is the code that sets up the microOps + //array in the parent class. This hook will hopefully + //allow all that to be automated. + %(alloc_micro_ops)s; + setMicroFlags(); + } +}}; + +let {{ + def genMacroOp(name, Name, ops, rolling = False): + baseClass = 'X86MacroInst' + if rolling: + baseClass = 'X86RollingMacroInst' + numMicroOps = len(ops) + allocMicroOps = '' + micropc = 0 + allocMicroOps += \ + "microOps[0] = %s;\n" % \ + op.getAllocator(True, not rolling, True, False) + micropc += 1 + if numMicroOps > 2: + for op in ops[1:-1]: + allocMicroOps += \ + "microOps[%d] = %s;\n" % \ + (micropc, op.getAllocator(True, not rolling, False, False)) + micropc += 1 + allocMicroOps += \ + "microOps[%d] = %s;\n" % \ + op.getAllocator(True, not rolling, False, True) + iop = InstObjParams(name, Name, baseClass, + {'code' : '', 'num_micro_ops' : numMicroOps, + 'alloc_micro_ops' : allocMicroOps}) + header_output = BasicDeclare.subst(iop) + decoder_output = MacroConstructor.subst(iop) + decode_block = BasicDecode.subst(iop) + exec_output = '' + return (header_output, decoder_output, decode_block, exec_output) +}}; diff --git a/src/arch/x86/isa/formats/multi.isa b/src/arch/x86/isa/formats/multi.isa index c14e80095..9fceec2b0 100644 --- a/src/arch/x86/isa/formats/multi.isa +++ b/src/arch/x86/isa/formats/multi.isa @@ -60,95 +60,152 @@ // Instructions that do the same thing to multiple sets of arguments. // -output header {{ -}}; - -output decoder {{ -}}; - -output exec {{ -}}; - let {{ - multiops = {} -}}; - -def format MultiOp(code, switchVal, opTags, *opt_flags) {{ - # These are C++ statements to create each type of static int. Since we - # don't know what will be microcoded and what won't, we can't assume a - # particular set of arguments for the constructor. - instNew = [] - orig_code = code - opRe = re.compile(r"%(?P[0-9]*)") - # Get all the labels out of the code and make a dict for them. We'll do - # this once since the position of labels shouldn't need to change at all. - ops = assembleMicro(code) - labels = buildLabelDict(ops) - for tagSet in opTags: - # A list of strings which either have the register number to use, or - # a piece of code for calculating it. - regNums = [] - code = orig_code - # Build up a name for this instructions class using the argument - # types. Each variation will get its own name this way. - postfix = '' - for tag in tagSet: - postfix += '_' + tag - - # Figure out what register indexes to use for each operand. This - # is where loads/stores could be set up. I need to distinguish - # between inputs and outputs. - # For right now, the indexes are just an increasing sequence - counter = 0 - for tag in tagSet: - regNums.append("%d" % counter) - counter += 1 - - # Replace the placeholders %0, %1, etc., with the right register - # indexes. - opMatch = opRe.search(code) - while opMatch: - opNum = opMatch.group("operandNum") - opNum = int(opNum) - if opNum > len(regNums): - print "No operand type specified for operand %d!" % opNum - print "I should bail out here too!" - regNum = regNums[opNum] - code = opRe.sub(regNum, code, 1) - opMatch = opRe.search(code) - - # All the loads which feed this instruction - loads = [] - # All the ops that make up the instruction proper. - ops = assembleMicro(code) - # Get all the labels out and make a dict for them - # All the stores for this instruction's results - stores = [] - - # Various counts - numLoads = len(loads) - numOps = len(ops) - numStores = len(stores) - totalOps = numLoads + numOps + numStores - print "There are %d total ops" % totalOps - + # This builds either a regular or macro op to implement the sequence of + # ops we give it. + def genInst(name, Name, ops): # If we can implement this instruction with exactly one microop, just # use that directly. newStmnt = '' - if totalOps == 1: - newStmnt = ops[0].getAllocator(labels) + if len(ops) == 1: + decode_block = "return (X86StaticInst *)(%s);" % \ + ops[0].getAllocator() + return ('', '', decode_block, '') else: - # Build up a macro op. We'll punt on this for now - pass - - instNew.append(newStmnt) - - decodeBlob = 'switch(%s) {\n' % switchVal - counter = 0 - for newStmnt in instNew: - decodeBlob += 'case %d: return (X86StaticInst *)(%s);\n' % \ - (counter, newStmnt) - counter += 1 - decodeBlob += '}\n' - decode_block = decodeBlob + # Build a macroop to contain the sequence of microops we've + # been given. + return genMacroOp(name, Name, ops) +}}; + +let {{ + # This code builds up a decode block which decodes based on switchval. + # vals is a dict which matches case values with what should be decoded to. + # builder is called on the exploded contents of "vals" values to generate + # whatever code should be used. + def doMultiOp(name, Name, builder, switchVal, vals, default = None): + header_output = '' + decoder_output = '' + decode_block = 'switch(%s) {\n' % switchVal + exec_output = '' + for (val, todo) in vals.items(): + (new_header_output, + new_decoder_output, + new_decode_block, + new_exec_output) = builder(name, Name, *todo) + header_output += new_header_output + decoder_output += new_decoder_output + decode_block += '\tcase %s: %s\n' % (val, new_decode_block) + exec_output += new_exec_output + if default: + (new_header_output, + new_decoder_output, + new_decode_block, + new_exec_output) = builder(name, Name, *default) + header_output += new_header_output + decoder_output += new_decoder_output + decode_block += '\tdefault: %s\n' % new_decode_block + exec_output += new_exec_output + decode_block += '}\n' + return (header_output, decoder_output, decode_block, exec_output) +}}; + +let {{ + + # This function specializes the given piece of code to use a particular + # set of argument types described by "opTags". These are "implemented" + # in reverse order. + def doCompOps(name, Name, code, opTags, postfix): + opNum = len(opTags) - 1 + while len(opTags): + # print "Building a composite op with tags", opTags + # print "And code", code + opNum = len(opTags) - 1 + # A regular expression to find the operand placeholders we're + # interested in. + opRe = re.compile("%%(?P%d)(?=[^0-9]|$)" % opNum) + tag = opTags[opNum] + # Build up a name for this instructions class using the argument + # types. Each variation will get its own name this way. + postfix = '_' + tag + postfix + tagParser = re.compile(r"(?P[A-Z][A-Z]*)(?P[a-z][a-z]*)|(r(?P[A-Za-z0-9][A-Za-z0-9]*))") + tagMatch = tagParser.search(tag) + if tagMatch == None: + raise Exception, "Problem parsing operand tag %s" % tag + reg = tagMatch.group("tagReg") + tagType = tagMatch.group("tagType") + tagSize = tagMatch.group("tagSize") + if reg: + #Figure out what to do with fixed register operands + if reg in ("Ax", "Bx", "Cx", "Dx"): + code = opRe.sub("{INTREG_R%s}" % reg.upper(), code) + elif reg == "Al": + # We need a way to specify register width + code = opRe.sub("{INTREG_RAX}", code) + else: + print "Didn't know how to encode fixed register %s!" % reg + elif tagType == None or tagSize == None: + raise Exception, "Problem parsing operand tag: %s" % tag + elif tagType == "C" or tagType == "D" or tagType == "G" or \ + tagType == "P" or tagType == "S" or \ + tagType == "T" or tagType == "V": + # Use the "reg" field of the ModRM byte to select the register + code = opRe.sub("{(uint8_t)MODRM_REG}", code) + elif tagType == "E" or tagType == "Q" or tagType == "W": + # This might refer to memory or to a register. We need to + # divide it up farther. + regCode = opRe.sub("{(uint8_t)MODRM_RM}", code) + regTags = copy.copy(opTags) + regTags.pop(-1) + # This needs to refer to memory, but we'll fill in the details + # later. It needs to take into account unaligned memory + # addresses. + memCode = opRe.sub("0", code) + memTags = copy.copy(opTags) + memTags.pop(-1) + return doMultiOp(name, Name, doCompOps, "MODRM_MOD", + {"3" : (regCode, regTags, postfix)}, + (memCode, memTags, postfix)) + elif tagType == "I" or tagType == "J": + # Substitute in an immediate + code = opRe.sub("{IMMEDIATE}", code) + elif tagType == "M": + # This needs to refer to memory, but we'll fill in the details + # later. It needs to take into account unaligned memory + # addresses. + code = opRe.sub("0", code) + elif tagType == "PR" or tagType == "R" or tagType == "VR": + # There should probably be a check here to verify that mod + # is equal to 11b + code = opRe.sub("{(uint8_t)MODRM_RM}", code) + else: + raise Exception, "Unrecognized tag %s." % tag + opTags.pop(-1) + + # At this point, we've built up "code" to have all the necessary extra + # instructions needed to implement whatever types of operands were + # specified. Now we'll assemble it it into a microOp sequence. + ops = assembleMicro(code) + + # Build a macroop to contain the sequence of microops we've + # constructed. The decode block will be used to fill in our + # inner decode structure, and the rest will be concatenated and + # passed back. + return genInst(name, Name + postfix, ops) +}}; + +def format TaggedOp(code, tagSet) {{ + (header_output, + decoder_output, + decode_block, + exec_output) = doCompOps(name, Name, code, tagSet, '') +}}; + +def format MultiOp(code, switchVal, opTags, *opt_flags) {{ + switcher = {} + for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags): + switcher[count] = (code, tagSet, '') + (header_output, + decoder_output, + decode_block, + exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher) }}; diff --git a/src/arch/x86/isa/includes.isa b/src/arch/x86/isa/includes.isa index 65e735b03..3440ec5da 100644 --- a/src/arch/x86/isa/includes.isa +++ b/src/arch/x86/isa/includes.isa @@ -83,9 +83,14 @@ //////////////////////////////////////////////////////////////////// // -// Output include file directives. +// Output include file directives. Also import the python modules we +// need for all the x86 custom decoder stuff // +let {{ + import copy +}}; + output header {{ #include #include diff --git a/src/arch/x86/isa/microasm.isa b/src/arch/x86/isa/microasm.isa index 2abce6e7f..711ebf667 100644 --- a/src/arch/x86/isa/microasm.isa +++ b/src/arch/x86/isa/microasm.isa @@ -67,7 +67,18 @@ let {{ self.label = '' self.args = [] - def getAllocator(self, labelDict = {}): + # This converts a list of python bools into + # a comma seperated list of C++ bools. + def microFlagsText(self, vals): + text = "" + for val in vals: + if val: + text += ", true" + else: + text += ", false" + return text + + def getAllocator(self, *microFlags): args = '' for arg in self.args: if arg.has_key("operandConst"): @@ -75,13 +86,21 @@ let {{ elif arg.has_key("operandCode"): args += ", %s" % arg["operandCode"] elif arg.has_key("operandLabel"): - if not labelDict.has_key(arg["operandLabel"]): - print "Unrecognized label %s!" % arg["operandLabel"] - args += ", %s" % labelDict[arg["operandLabel"]] + raise Exception, "Found a label while creating allocator string." else: - print "Unrecognized operand type!" - return 'new %s(machInst %s)' % (self.className, args) + raise Exception, "Unrecognized operand type." + return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args) +}}; +let {{ + def buildLabelDict(ops): + labels = {} + micropc = 0 + for op in ops: + if op.label: + labels[op.label] = count + micropc += 1 + return labels def assembleMicro(code): # This function takes in a block of microcode assembly and returns @@ -113,25 +132,26 @@ let {{ statement = MicroOpStatement() # Get a line and seperate it from the rest of the code line = lineMatch.group("line") - print "Parsing line %s" % line + orig_line = line + # print "Parsing line %s" % line code = lineRe.sub('', code, 1) # Find the label, if any labelMatch = labelRe.search(line) if labelMatch != None: statement.label = labelMatch.group("label") - print "Found label %s." % statement.label + # print "Found label %s." % statement.label # Clear the label from the statement line = labelRe.sub('', line, 1) # Find the class name which is roughly equivalent to the op name classMatch = classRe.search(line) if classMatch == None: - print "Oh no! I can't find what instruction you want!" - print "I should really bail out here, but I don't know how!" + raise Exception, "Couldn't find class name in statement: %s" \ + % orig_line else: statement.className = classMatch.group("className") - print "Found class name %s." % statement.className + # print "Found class name %s." % statement.className # Clear the class name from the statement line = classRe.sub('', line, 1) @@ -149,24 +169,31 @@ let {{ if opMatch.group(opType): statement.args[-1][opType] = opMatch.group(opType) if len(statement.args[-1]) == 0: - print "I had a problem parsing an operand!" + print "Problem parsing operand in statement: %s" \ + % orig_line line = opRe.sub('', line, 1) - print "Found operand %s." % statement.args[-1] + # print "Found operand %s." % statement.args[-1] opMatch = opRe.search(line) - print "Found operands", statement.args + # print "Found operands", statement.args # Add this statement to our collection statements.append(statement) # Get the next line lineMatch = lineRe.search(code) - return statements - def buildLabelDict(ops): - labels = {} - count = 0 - for op in ops: - if op.label: - labels[op.label] = count - count += 1 + # Decode the labels into displacements + labels = buildLabelDict(statements) + micropc = 0 + for statement in statements: + for arg in statement.args: + if arg.has_key("operandLabel"): + if not labels.has_key(arg["operandLabel"]): + raise Exception, "Unrecognized label: %s." % arg["operandLabel"] + # This is assuming that intra microcode branches go to + # the next micropc + displacement, or + # micropc + 1 + displacement. + arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1 + micropc += 1 + return statements }}; diff --git a/src/arch/x86/predecoder.cc b/src/arch/x86/predecoder.cc index fbed4fe41..80971e7cf 100644 --- a/src/arch/x86/predecoder.cc +++ b/src/arch/x86/predecoder.cc @@ -212,11 +212,16 @@ namespace X86ISA //Determine what to expect next if (UsesModRM[emi.opcode.num - 1][nextByte]) { nextState = ModRMState; - } else if(immediateSize) { - nextState = ImmediateState; } else { - emiIsReady = true; - nextState = PrefixState; + //If there's no modRM byte, set it to 0 so we can detect + //that later. + emi.modRM = 0; + if(immediateSize) { + nextState = ImmediateState; + } else { + emiIsReady = true; + nextState = PrefixState; + } } } return nextState; @@ -241,11 +246,11 @@ namespace X86ISA displacementSize = 0; } else { //figure out 32/64 bit displacement size - if(nextByte & 0xC7 == 0x05 || + if(nextByte & 0xC6 == 0x04 || nextByte & 0xC0 == 0x80) displacementSize = 4; else if(nextByte & 0xC0 == 0x40) - displacementSize = 2; + displacementSize = 1; else displacementSize = 0; }