Merge zizzer.eecs.umich.edu:/bk/newmem
into ahchoo.blinky.homelinux.org:/home/gblack/m5/newmem-x86 --HG-- extra : convert_revision : 7be8ebe55a7b11552d78701520f93aa86db1e501
This commit is contained in:
commit
93d4c624c5
7 changed files with 382 additions and 123 deletions
|
@ -61,14 +61,15 @@
|
|||
0x1: decode OPCODE_OP_TOP5 {
|
||||
format WarnUnimpl {
|
||||
0x00: decode OPCODE_OP_BOTTOM3 {
|
||||
0x4: TaggedOp::add({{AddI %0 %0}}, [rAl]);
|
||||
0x5: TaggedOp::add({{AddI %0 %0}}, [rAx]);
|
||||
0x6: push_ES();
|
||||
0x7: pop_ES();
|
||||
default: MultiOp::add(
|
||||
{{Add %0 %0 %1}},
|
||||
OPCODE_OP_BOTTOM3,
|
||||
[[Eb,Gb],[Ev,Gv],
|
||||
[Gb,Eb],[Gv,Ev],
|
||||
[Al,Ib],[rAx,Iz]]);
|
||||
[Gb,Eb],[Gv,Ev]]);
|
||||
}
|
||||
0x01: decode OPCODE_OP_BOTTOM3 {
|
||||
0x0: or_Eb_Gb();
|
||||
|
@ -125,15 +126,16 @@
|
|||
0x7: das();
|
||||
}
|
||||
0x06: decode OPCODE_OP_BOTTOM3 {
|
||||
0x0: xor_Eb_Gb();
|
||||
0x1: xor_Ev_Gv();
|
||||
0x2: xor_Gb_Eb();
|
||||
0x3: xor_Gv_Ev();
|
||||
0x4: xor_Al_Ib();
|
||||
0x5: xor_rAX_Iz();
|
||||
0x4: TaggedOp::xor({{XorI %0 %0}}, [rAl]);
|
||||
0x5: TaggedOp::xor({{XorI %0 %0}}, [rAx]);
|
||||
0x6: M5InternalError::error(
|
||||
{{"Tried to execute the SS segment override prefix!"}});
|
||||
0x7: aaa();
|
||||
default: MultiOp::xor(
|
||||
{{Xor %0 %0 %1}},
|
||||
OPCODE_OP_BOTTOM3,
|
||||
[[Eb,Gb],[Ev,Gv],
|
||||
[Gb,Eb],[Gv,Ev]]);
|
||||
}
|
||||
0x07: decode OPCODE_OP_BOTTOM3 {
|
||||
0x0: cmp_Eb_Gb();
|
||||
|
|
|
@ -95,6 +95,9 @@
|
|||
//malfunction of the decode mechanism.
|
||||
##include "error.isa"
|
||||
|
||||
//Include code to build up macro op instructions
|
||||
##include "macroop.isa"
|
||||
|
||||
//Include a format which implements a batch of instructions which do the same
|
||||
//thing on a variety of inputs
|
||||
##include "multi.isa"
|
||||
|
|
160
src/arch/x86/isa/formats/macroop.isa
Normal file
160
src/arch/x86/isa/formats/macroop.isa
Normal file
|
@ -0,0 +1,160 @@
|
|||
// -*- mode:c++ -*-
|
||||
|
||||
// Copyright (c) 2007 The Hewlett-Packard Development Company
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use of this software in source and binary forms,
|
||||
// with or without modification, are permitted provided that the
|
||||
// following conditions are met:
|
||||
//
|
||||
// The software must be used only for Non-Commercial Use which means any
|
||||
// use which is NOT directed to receiving any direct monetary
|
||||
// compensation for, or commercial advantage from such use. Illustrative
|
||||
// examples of non-commercial use are academic research, personal study,
|
||||
// teaching, education and corporate research & development.
|
||||
// Illustrative examples of commercial use are distributing products for
|
||||
// commercial advantage and providing services using the software for
|
||||
// commercial advantage.
|
||||
//
|
||||
// If you wish to use this software or functionality therein that may be
|
||||
// covered by patents for commercial use, please contact:
|
||||
// Director of Intellectual Property Licensing
|
||||
// Office of Strategy and Technology
|
||||
// Hewlett-Packard Company
|
||||
// 1501 Page Mill Road
|
||||
// Palo Alto, California 94304
|
||||
//
|
||||
// Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer. Redistributions
|
||||
// in binary form must reproduce the above copyright notice, this list of
|
||||
// conditions and the following disclaimer in the documentation and/or
|
||||
// other materials provided with the distribution. Neither the name of
|
||||
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission. No right of
|
||||
// sublicense is granted herewith. Derivatives of the software and
|
||||
// output created using the software may be prepared, but only for
|
||||
// Non-Commercial Uses. Derivatives of the software may be shared with
|
||||
// others provided: (i) the others agree to abide by the list of
|
||||
// conditions herein which includes the Non-Commercial Use restrictions;
|
||||
// and (ii) such Derivatives of the software include the above copyright
|
||||
// notice to acknowledge the contribution from this software where
|
||||
// applicable, this list of conditions and the disclaimer below.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Authors: Gabe Black
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Instructions that do the same thing to multiple sets of arguments.
|
||||
//
|
||||
|
||||
output header {{
|
||||
|
||||
// Base class for most macroops, except ones that need to commit as
|
||||
// they go.
|
||||
class X86MacroInst : public X86StaticInst
|
||||
{
|
||||
protected:
|
||||
const uint32_t numMicroOps;
|
||||
|
||||
//Constructor.
|
||||
X86MacroInst(const char *mnem, ExtMachInst _machInst,
|
||||
uint32_t _numMicroOps)
|
||||
: X86StaticInst(mnem, _machInst, No_OpClass),
|
||||
numMicroOps(_numMicroOps)
|
||||
{
|
||||
assert(numMicroOps);
|
||||
microOps = new StaticInstPtr[numMicroOps];
|
||||
flags[IsMacroOp] = true;
|
||||
}
|
||||
|
||||
~X86MacroInst()
|
||||
{
|
||||
delete [] microOps;
|
||||
}
|
||||
|
||||
std::string generateDisassembly(Addr pc,
|
||||
const SymbolTable *symtab) const;
|
||||
|
||||
StaticInstPtr * microOps;
|
||||
|
||||
StaticInstPtr fetchMicroOp(MicroPC microPC)
|
||||
{
|
||||
assert(microPC < numMicroOps);
|
||||
return microOps[microPC];
|
||||
}
|
||||
|
||||
%(BasicExecPanic)s
|
||||
};
|
||||
|
||||
// Base class for macroops which commit as they go. This is for
|
||||
// instructions which can be partially completed like those with the
|
||||
// rep prefix. This prevents those instructions from overflowing
|
||||
// buffers with uncommitted microops.
|
||||
class X86RollingMacroInst : public X86MacroInst
|
||||
{
|
||||
protected:
|
||||
//Constructor.
|
||||
X86RollingMacroInst(const char *mnem, ExtMachInst _machInst,
|
||||
uint32_t _numMicroOps)
|
||||
: X86MacroInst(mnem, _machInst, numMicroOps)
|
||||
{}
|
||||
};
|
||||
}};
|
||||
|
||||
// Basic instruction class constructor template.
|
||||
def template MacroConstructor {{
|
||||
inline %(class_name)s::%(class_name)s(ExtMachInst machInst)
|
||||
: %(base_class)s("%(mnemonic)s", machInst, %(num_micro_ops)s)
|
||||
{
|
||||
%(constructor)s;
|
||||
//alloc_micro_ops is the code that sets up the microOps
|
||||
//array in the parent class. This hook will hopefully
|
||||
//allow all that to be automated.
|
||||
%(alloc_micro_ops)s;
|
||||
setMicroFlags();
|
||||
}
|
||||
}};
|
||||
|
||||
let {{
|
||||
def genMacroOp(name, Name, ops, rolling = False):
|
||||
baseClass = 'X86MacroInst'
|
||||
if rolling:
|
||||
baseClass = 'X86RollingMacroInst'
|
||||
numMicroOps = len(ops)
|
||||
allocMicroOps = ''
|
||||
micropc = 0
|
||||
allocMicroOps += \
|
||||
"microOps[0] = %s;\n" % \
|
||||
op.getAllocator(True, not rolling, True, False)
|
||||
micropc += 1
|
||||
if numMicroOps > 2:
|
||||
for op in ops[1:-1]:
|
||||
allocMicroOps += \
|
||||
"microOps[%d] = %s;\n" % \
|
||||
(micropc, op.getAllocator(True, not rolling, False, False))
|
||||
micropc += 1
|
||||
allocMicroOps += \
|
||||
"microOps[%d] = %s;\n" % \
|
||||
op.getAllocator(True, not rolling, False, True)
|
||||
iop = InstObjParams(name, Name, baseClass,
|
||||
{'code' : '', 'num_micro_ops' : numMicroOps,
|
||||
'alloc_micro_ops' : allocMicroOps})
|
||||
header_output = BasicDeclare.subst(iop)
|
||||
decoder_output = MacroConstructor.subst(iop)
|
||||
decode_block = BasicDecode.subst(iop)
|
||||
exec_output = ''
|
||||
return (header_output, decoder_output, decode_block, exec_output)
|
||||
}};
|
|
@ -60,95 +60,152 @@
|
|||
// Instructions that do the same thing to multiple sets of arguments.
|
||||
//
|
||||
|
||||
output header {{
|
||||
}};
|
||||
|
||||
output decoder {{
|
||||
}};
|
||||
|
||||
output exec {{
|
||||
}};
|
||||
|
||||
let {{
|
||||
multiops = {}
|
||||
}};
|
||||
|
||||
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
|
||||
# These are C++ statements to create each type of static int. Since we
|
||||
# don't know what will be microcoded and what won't, we can't assume a
|
||||
# particular set of arguments for the constructor.
|
||||
instNew = []
|
||||
orig_code = code
|
||||
opRe = re.compile(r"%(?P<operandNum>[0-9]*)")
|
||||
# Get all the labels out of the code and make a dict for them. We'll do
|
||||
# this once since the position of labels shouldn't need to change at all.
|
||||
ops = assembleMicro(code)
|
||||
labels = buildLabelDict(ops)
|
||||
for tagSet in opTags:
|
||||
# A list of strings which either have the register number to use, or
|
||||
# a piece of code for calculating it.
|
||||
regNums = []
|
||||
code = orig_code
|
||||
# Build up a name for this instructions class using the argument
|
||||
# types. Each variation will get its own name this way.
|
||||
postfix = ''
|
||||
for tag in tagSet:
|
||||
postfix += '_' + tag
|
||||
|
||||
# Figure out what register indexes to use for each operand. This
|
||||
# is where loads/stores could be set up. I need to distinguish
|
||||
# between inputs and outputs.
|
||||
# For right now, the indexes are just an increasing sequence
|
||||
counter = 0
|
||||
for tag in tagSet:
|
||||
regNums.append("%d" % counter)
|
||||
counter += 1
|
||||
|
||||
# Replace the placeholders %0, %1, etc., with the right register
|
||||
# indexes.
|
||||
opMatch = opRe.search(code)
|
||||
while opMatch:
|
||||
opNum = opMatch.group("operandNum")
|
||||
opNum = int(opNum)
|
||||
if opNum > len(regNums):
|
||||
print "No operand type specified for operand %d!" % opNum
|
||||
print "I should bail out here too!"
|
||||
regNum = regNums[opNum]
|
||||
code = opRe.sub(regNum, code, 1)
|
||||
opMatch = opRe.search(code)
|
||||
|
||||
# All the loads which feed this instruction
|
||||
loads = []
|
||||
# All the ops that make up the instruction proper.
|
||||
ops = assembleMicro(code)
|
||||
# Get all the labels out and make a dict for them
|
||||
# All the stores for this instruction's results
|
||||
stores = []
|
||||
|
||||
# Various counts
|
||||
numLoads = len(loads)
|
||||
numOps = len(ops)
|
||||
numStores = len(stores)
|
||||
totalOps = numLoads + numOps + numStores
|
||||
print "There are %d total ops" % totalOps
|
||||
|
||||
# This builds either a regular or macro op to implement the sequence of
|
||||
# ops we give it.
|
||||
def genInst(name, Name, ops):
|
||||
# If we can implement this instruction with exactly one microop, just
|
||||
# use that directly.
|
||||
newStmnt = ''
|
||||
if totalOps == 1:
|
||||
newStmnt = ops[0].getAllocator(labels)
|
||||
if len(ops) == 1:
|
||||
decode_block = "return (X86StaticInst *)(%s);" % \
|
||||
ops[0].getAllocator()
|
||||
return ('', '', decode_block, '')
|
||||
else:
|
||||
# Build up a macro op. We'll punt on this for now
|
||||
pass
|
||||
|
||||
instNew.append(newStmnt)
|
||||
|
||||
decodeBlob = 'switch(%s) {\n' % switchVal
|
||||
counter = 0
|
||||
for newStmnt in instNew:
|
||||
decodeBlob += 'case %d: return (X86StaticInst *)(%s);\n' % \
|
||||
(counter, newStmnt)
|
||||
counter += 1
|
||||
decodeBlob += '}\n'
|
||||
decode_block = decodeBlob
|
||||
# Build a macroop to contain the sequence of microops we've
|
||||
# been given.
|
||||
return genMacroOp(name, Name, ops)
|
||||
}};
|
||||
|
||||
let {{
|
||||
# This code builds up a decode block which decodes based on switchval.
|
||||
# vals is a dict which matches case values with what should be decoded to.
|
||||
# builder is called on the exploded contents of "vals" values to generate
|
||||
# whatever code should be used.
|
||||
def doMultiOp(name, Name, builder, switchVal, vals, default = None):
|
||||
header_output = ''
|
||||
decoder_output = ''
|
||||
decode_block = 'switch(%s) {\n' % switchVal
|
||||
exec_output = ''
|
||||
for (val, todo) in vals.items():
|
||||
(new_header_output,
|
||||
new_decoder_output,
|
||||
new_decode_block,
|
||||
new_exec_output) = builder(name, Name, *todo)
|
||||
header_output += new_header_output
|
||||
decoder_output += new_decoder_output
|
||||
decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
|
||||
exec_output += new_exec_output
|
||||
if default:
|
||||
(new_header_output,
|
||||
new_decoder_output,
|
||||
new_decode_block,
|
||||
new_exec_output) = builder(name, Name, *default)
|
||||
header_output += new_header_output
|
||||
decoder_output += new_decoder_output
|
||||
decode_block += '\tdefault: %s\n' % new_decode_block
|
||||
exec_output += new_exec_output
|
||||
decode_block += '}\n'
|
||||
return (header_output, decoder_output, decode_block, exec_output)
|
||||
}};
|
||||
|
||||
let {{
|
||||
|
||||
# This function specializes the given piece of code to use a particular
|
||||
# set of argument types described by "opTags". These are "implemented"
|
||||
# in reverse order.
|
||||
def doCompOps(name, Name, code, opTags, postfix):
|
||||
opNum = len(opTags) - 1
|
||||
while len(opTags):
|
||||
# print "Building a composite op with tags", opTags
|
||||
# print "And code", code
|
||||
opNum = len(opTags) - 1
|
||||
# A regular expression to find the operand placeholders we're
|
||||
# interested in.
|
||||
opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
|
||||
tag = opTags[opNum]
|
||||
# Build up a name for this instructions class using the argument
|
||||
# types. Each variation will get its own name this way.
|
||||
postfix = '_' + tag + postfix
|
||||
tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
|
||||
tagMatch = tagParser.search(tag)
|
||||
if tagMatch == None:
|
||||
raise Exception, "Problem parsing operand tag %s" % tag
|
||||
reg = tagMatch.group("tagReg")
|
||||
tagType = tagMatch.group("tagType")
|
||||
tagSize = tagMatch.group("tagSize")
|
||||
if reg:
|
||||
#Figure out what to do with fixed register operands
|
||||
if reg in ("Ax", "Bx", "Cx", "Dx"):
|
||||
code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
|
||||
elif reg == "Al":
|
||||
# We need a way to specify register width
|
||||
code = opRe.sub("{INTREG_RAX}", code)
|
||||
else:
|
||||
print "Didn't know how to encode fixed register %s!" % reg
|
||||
elif tagType == None or tagSize == None:
|
||||
raise Exception, "Problem parsing operand tag: %s" % tag
|
||||
elif tagType == "C" or tagType == "D" or tagType == "G" or \
|
||||
tagType == "P" or tagType == "S" or \
|
||||
tagType == "T" or tagType == "V":
|
||||
# Use the "reg" field of the ModRM byte to select the register
|
||||
code = opRe.sub("{(uint8_t)MODRM_REG}", code)
|
||||
elif tagType == "E" or tagType == "Q" or tagType == "W":
|
||||
# This might refer to memory or to a register. We need to
|
||||
# divide it up farther.
|
||||
regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
|
||||
regTags = copy.copy(opTags)
|
||||
regTags.pop(-1)
|
||||
# This needs to refer to memory, but we'll fill in the details
|
||||
# later. It needs to take into account unaligned memory
|
||||
# addresses.
|
||||
memCode = opRe.sub("0", code)
|
||||
memTags = copy.copy(opTags)
|
||||
memTags.pop(-1)
|
||||
return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
|
||||
{"3" : (regCode, regTags, postfix)},
|
||||
(memCode, memTags, postfix))
|
||||
elif tagType == "I" or tagType == "J":
|
||||
# Substitute in an immediate
|
||||
code = opRe.sub("{IMMEDIATE}", code)
|
||||
elif tagType == "M":
|
||||
# This needs to refer to memory, but we'll fill in the details
|
||||
# later. It needs to take into account unaligned memory
|
||||
# addresses.
|
||||
code = opRe.sub("0", code)
|
||||
elif tagType == "PR" or tagType == "R" or tagType == "VR":
|
||||
# There should probably be a check here to verify that mod
|
||||
# is equal to 11b
|
||||
code = opRe.sub("{(uint8_t)MODRM_RM}", code)
|
||||
else:
|
||||
raise Exception, "Unrecognized tag %s." % tag
|
||||
opTags.pop(-1)
|
||||
|
||||
# At this point, we've built up "code" to have all the necessary extra
|
||||
# instructions needed to implement whatever types of operands were
|
||||
# specified. Now we'll assemble it it into a microOp sequence.
|
||||
ops = assembleMicro(code)
|
||||
|
||||
# Build a macroop to contain the sequence of microops we've
|
||||
# constructed. The decode block will be used to fill in our
|
||||
# inner decode structure, and the rest will be concatenated and
|
||||
# passed back.
|
||||
return genInst(name, Name + postfix, ops)
|
||||
}};
|
||||
|
||||
def format TaggedOp(code, tagSet) {{
|
||||
(header_output,
|
||||
decoder_output,
|
||||
decode_block,
|
||||
exec_output) = doCompOps(name, Name, code, tagSet, '')
|
||||
}};
|
||||
|
||||
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
|
||||
switcher = {}
|
||||
for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
|
||||
switcher[count] = (code, tagSet, '')
|
||||
(header_output,
|
||||
decoder_output,
|
||||
decode_block,
|
||||
exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
|
||||
}};
|
||||
|
|
|
@ -83,9 +83,14 @@
|
|||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Output include file directives.
|
||||
// Output include file directives. Also import the python modules we
|
||||
// need for all the x86 custom decoder stuff
|
||||
//
|
||||
|
||||
let {{
|
||||
import copy
|
||||
}};
|
||||
|
||||
output header {{
|
||||
#include <cstring>
|
||||
#include <sstream>
|
||||
|
|
|
@ -67,7 +67,18 @@ let {{
|
|||
self.label = ''
|
||||
self.args = []
|
||||
|
||||
def getAllocator(self, labelDict = {}):
|
||||
# This converts a list of python bools into
|
||||
# a comma seperated list of C++ bools.
|
||||
def microFlagsText(self, vals):
|
||||
text = ""
|
||||
for val in vals:
|
||||
if val:
|
||||
text += ", true"
|
||||
else:
|
||||
text += ", false"
|
||||
return text
|
||||
|
||||
def getAllocator(self, *microFlags):
|
||||
args = ''
|
||||
for arg in self.args:
|
||||
if arg.has_key("operandConst"):
|
||||
|
@ -75,13 +86,21 @@ let {{
|
|||
elif arg.has_key("operandCode"):
|
||||
args += ", %s" % arg["operandCode"]
|
||||
elif arg.has_key("operandLabel"):
|
||||
if not labelDict.has_key(arg["operandLabel"]):
|
||||
print "Unrecognized label %s!" % arg["operandLabel"]
|
||||
args += ", %s" % labelDict[arg["operandLabel"]]
|
||||
raise Exception, "Found a label while creating allocator string."
|
||||
else:
|
||||
print "Unrecognized operand type!"
|
||||
return 'new %s(machInst %s)' % (self.className, args)
|
||||
raise Exception, "Unrecognized operand type."
|
||||
return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args)
|
||||
}};
|
||||
|
||||
let {{
|
||||
def buildLabelDict(ops):
|
||||
labels = {}
|
||||
micropc = 0
|
||||
for op in ops:
|
||||
if op.label:
|
||||
labels[op.label] = count
|
||||
micropc += 1
|
||||
return labels
|
||||
|
||||
def assembleMicro(code):
|
||||
# This function takes in a block of microcode assembly and returns
|
||||
|
@ -113,25 +132,26 @@ let {{
|
|||
statement = MicroOpStatement()
|
||||
# Get a line and seperate it from the rest of the code
|
||||
line = lineMatch.group("line")
|
||||
print "Parsing line %s" % line
|
||||
orig_line = line
|
||||
# print "Parsing line %s" % line
|
||||
code = lineRe.sub('', code, 1)
|
||||
|
||||
# Find the label, if any
|
||||
labelMatch = labelRe.search(line)
|
||||
if labelMatch != None:
|
||||
statement.label = labelMatch.group("label")
|
||||
print "Found label %s." % statement.label
|
||||
# print "Found label %s." % statement.label
|
||||
# Clear the label from the statement
|
||||
line = labelRe.sub('', line, 1)
|
||||
|
||||
# Find the class name which is roughly equivalent to the op name
|
||||
classMatch = classRe.search(line)
|
||||
if classMatch == None:
|
||||
print "Oh no! I can't find what instruction you want!"
|
||||
print "I should really bail out here, but I don't know how!"
|
||||
raise Exception, "Couldn't find class name in statement: %s" \
|
||||
% orig_line
|
||||
else:
|
||||
statement.className = classMatch.group("className")
|
||||
print "Found class name %s." % statement.className
|
||||
# print "Found class name %s." % statement.className
|
||||
|
||||
# Clear the class name from the statement
|
||||
line = classRe.sub('', line, 1)
|
||||
|
@ -149,24 +169,31 @@ let {{
|
|||
if opMatch.group(opType):
|
||||
statement.args[-1][opType] = opMatch.group(opType)
|
||||
if len(statement.args[-1]) == 0:
|
||||
print "I had a problem parsing an operand!"
|
||||
print "Problem parsing operand in statement: %s" \
|
||||
% orig_line
|
||||
line = opRe.sub('', line, 1)
|
||||
print "Found operand %s." % statement.args[-1]
|
||||
# print "Found operand %s." % statement.args[-1]
|
||||
opMatch = opRe.search(line)
|
||||
print "Found operands", statement.args
|
||||
# print "Found operands", statement.args
|
||||
|
||||
# Add this statement to our collection
|
||||
statements.append(statement)
|
||||
|
||||
# Get the next line
|
||||
lineMatch = lineRe.search(code)
|
||||
return statements
|
||||
|
||||
def buildLabelDict(ops):
|
||||
labels = {}
|
||||
count = 0
|
||||
for op in ops:
|
||||
if op.label:
|
||||
labels[op.label] = count
|
||||
count += 1
|
||||
# Decode the labels into displacements
|
||||
labels = buildLabelDict(statements)
|
||||
micropc = 0
|
||||
for statement in statements:
|
||||
for arg in statement.args:
|
||||
if arg.has_key("operandLabel"):
|
||||
if not labels.has_key(arg["operandLabel"]):
|
||||
raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
|
||||
# This is assuming that intra microcode branches go to
|
||||
# the next micropc + displacement, or
|
||||
# micropc + 1 + displacement.
|
||||
arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1
|
||||
micropc += 1
|
||||
return statements
|
||||
}};
|
||||
|
|
|
@ -212,11 +212,16 @@ namespace X86ISA
|
|||
//Determine what to expect next
|
||||
if (UsesModRM[emi.opcode.num - 1][nextByte]) {
|
||||
nextState = ModRMState;
|
||||
} else if(immediateSize) {
|
||||
nextState = ImmediateState;
|
||||
} else {
|
||||
emiIsReady = true;
|
||||
nextState = PrefixState;
|
||||
//If there's no modRM byte, set it to 0 so we can detect
|
||||
//that later.
|
||||
emi.modRM = 0;
|
||||
if(immediateSize) {
|
||||
nextState = ImmediateState;
|
||||
} else {
|
||||
emiIsReady = true;
|
||||
nextState = PrefixState;
|
||||
}
|
||||
}
|
||||
}
|
||||
return nextState;
|
||||
|
@ -241,11 +246,11 @@ namespace X86ISA
|
|||
displacementSize = 0;
|
||||
} else {
|
||||
//figure out 32/64 bit displacement size
|
||||
if(nextByte & 0xC7 == 0x05 ||
|
||||
if(nextByte & 0xC6 == 0x04 ||
|
||||
nextByte & 0xC0 == 0x80)
|
||||
displacementSize = 4;
|
||||
else if(nextByte & 0xC0 == 0x40)
|
||||
displacementSize = 2;
|
||||
displacementSize = 1;
|
||||
else
|
||||
displacementSize = 0;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue