Adding the sparc ISA files which were worked on locally

arch/sparc/isa_desc/bitfields.h:
    This file defines the bit fields used by the isa description system
arch/sparc/isa_desc/decoder.h:
    This file describes the decoder for the isa description system
arch/sparc/isa_desc/formats.h:
    This file declares the instruction formats
arch/sparc/isa_desc/formats/basic.format:
    This file implements the "basic" instruction format
arch/sparc/isa_desc/formats/branch.format:
    This file implements the "branch" instruction format
arch/sparc/isa_desc/formats/integerop.format:
    This file implements the "integerop" instruction format
arch/sparc/isa_desc/formats/mem.format:
    This file implements the "mem" instruction format
arch/sparc/isa_desc/formats/noop.format:
    This file implements the "noop" instruction format
arch/sparc/isa_desc/formats/trap.format:
    This file implements the "trap" instruction format
arch/sparc/isa_desc/includes.h:
    This file is all of the inclues that are used by the isa description system

--HG--
extra : convert_revision : 12a2ffe949317b8b57d83263a4261131b9432c2a
This commit is contained in:
Gabe Black 2006-01-10 14:57:37 -05:00
parent 16bda9c03e
commit 79a4683876
10 changed files with 1166 additions and 0 deletions

View file

@ -0,0 +1,50 @@
////////////////////////////////////////////////////////////////////
//
// Bitfield definitions.
//
// Bitfields are shared liberally between instruction formats, so they are
// simply defined alphabetically
def bitfield A <29>;
def bitfield CC02 <20>;
def bitfield CC03 <25>;
def bitfield CC04 <11>;
def bitfield CC12 <21>;
def bitfield CC13 <26>;
def bitfield CC14 <12>;
def bitfield CC2 <18>;
def bitfield CMASK <6:4>;
def bitfield COND2 <28:25>;
def bitfield COND4 <17:14>;
def bitfield D16HI <21:20>;
def bitfield D16LO <13:0>;
def bitfield DISP19 <18:0>;
def bitfield DISP22 <21:0>;
def bitfield DISP30 <29:0>;
def bitfield FCN <29:26>;
def bitfield I <13>;
def bitfield IMM_ASI <12:5>;
def bitfield IMM22 <21:0>;
def bitfield MMASK <3:0>;
def bitfield OP <31:30>;
def bitfield OP2 <24:22>;
def bitfield OP3 <24:19>;
def bitfield OPF <13:5>;
def bitfield OPF_CC <13:11>;
def bitfield OPF_LOW5 <9:5>;
def bitfield OPF_LOW6 <10:5>;
def bitfield P <19>;
def bitfield RCOND2 <27:25>;
def bitfield RCOND3 <12:10>;
def bitfield RCOND4 <12:10>;
def bitfield RD <29:25>;
def bitfield RS1 <18:14>;
def bitfield RS2 <4:0>;
def bitfield SHCNT32 <4:0>;
def bitfield SHCNT64 <5:0>;
def bitfield SIMM10 <9:0>;
def bitfield SIMM11 <10:0>;
def bitfield SIMM13 <12:0>;
def bitfield SW_TRAP <6:0>;
def bitfield X <12>;

View file

@ -0,0 +1,638 @@
////////////////////////////////////////////////////////////////////
//
// The actual decoder specification
//
decode OP default Trap::unknown({{illegal_instruction}}) {
0x0: decode OP2 {
0x0: Trap::illtrap({{illegal_instruction}}); //ILLTRAP
0x1: Branch::bpcc({{
switch((CC12 << 1) | CC02)
{
case 1: case 3:
throw illegal_instruction;
case 0:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
break;
case 2:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND2))
;//branchHere
break;
}
}});//BPcc
0x2: Branch::bicc({{
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
}});//Bicc
0x3: Branch::bpr({{
switch(RCOND)
{
case 0: case 4:
throw illegal_instruction;
case 1:
if(Rs1 == 0) ;//branchHere
break;
case 2:
if(Rs1 <= 0) ;//branchHere
break;
case 3:
if(Rs1 < 0) ;//branchHere
break;
case 5:
if(Rs1 != 0) ;//branchHere
break;
case 6:
if(Rs1 > 0) ;//branchHere
break;
case 7:
if(Rs1 >= 0) ;//branchHere
break;
}
}}); //BPr
0x4: IntegerOp::sethi({{Rd = (IMM22 << 10) & 0xFFFFFC00;}}); //SETHI (or NOP if rd == 0 and imm == 0)
0x5: Trap::fbpfcc({{throw fp_disabled;}}); //FBPfcc
0x6: Trap::fbfcc({{throw fp_disabled;}}); //FBfcc
}
0x1: Branch::call({{
//branch here
Rd = xc->pc;
}});
0x2: decode OP3 {
format IntegerOp {
0x00: add({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
Rd = Rs1.sdw + val2;
}});//ADD
0x01: and({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & val2;
}});//AND
0x02: or({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | val2;
}});//OR
0x03: xor({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw ^ val2;
}});//XOR
0x04: sub({{
INT64 val2 = ~((UINT64)(I ? SIMM13.sdw : Rs2.udw))+1;
Rd = Rs1.sdw + val2;
}});//SUB
0x05: andn({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & ~val2;
}});//ANDN
0x06: orn({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | ~val2;
}});//ORN
0x07: xnor({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = ~(Rs1.udw ^ val2);
}});//XNOR
0x08: addc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = Rs1.sdw + val2 + carryin;
}});//ADDC
0x09: mulx({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 * val2;
}});//MULX
0x0A: umul({{
UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//UMUL
0x0B: smul({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.sdw);
rd.sdw = resTemp = Rs1.sdw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//SMUL
0x0C: subc({{
INT64 val2 = ~((INT64)(I ? SIMM13.sdw : Rs2.sdw))+1;
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd.sdw = Rs1.sdw + val2 + carryin;
}});//SUBC
0x0D: udivx({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
if(val2 == 0) throw division_by_zero;
Rd.udw = Rs1.udw / val2;
}});//UDIVX
0x0E: udiv({{
UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
if(val2 == 0) throw division_by_zero;
resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2;
INT32 overflow = (resTemp<63:32> != 0);
if(overflow) rd.udw = resTemp = 0xFFFFFFFF;
else rd.udw = resTemp;
}}); //UDIV
0x0F: sdiv({{
INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
if(val2 == 0) throw division_by_zero;
Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2;
INT32 overflow = (resTemp<63:31> != 0);
INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
if(overflow) rd.udw = resTemp = 0x7FFFFFFF;
else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000;
else rd.udw = resTemp;
}});//SDIV
}
format IntegerOpCc {
0x10: addcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDcc
0x11: andcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & val2;}}
,{{0}},{{0}},{{0}},{{0}});//ANDcc
0x12: orcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | val2;}}
,{{0}},{{0}},{{0}},{{0}});//ORcc
0x13: xorcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 ^ val2;}}
,{{0}},{{0}},{{0}},{{0}});//XORcc
0x14: subcc({{
INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 - val2;}},
{{((Rs1 & 0xFFFFFFFF + (~val2) & 0xFFFFFFFF + 1) >> 31)}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (~val2) >> 1) + ((Rs1 | ~val2) & 0x1))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);//SUBcc
0x15: andncc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & ~val2;}}
,{{0}},{{0}},{{0}},{{0}});//ANDNcc
0x16: orncc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | ~val2;}}
,{{0}},{{0}},{{0}},{{0}});//ORNcc
0x17: xnorcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = ~(Rs1 ^ val2);}}
,{{0}},{{0}},{{0}},{{0}});//XNORcc
0x18: addccc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = resTemp = Rs1 + val2 + carryin;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31 + carryin)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) + ((Rs1 & val2) | (carryin & (Rs1 | val2)) & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDCcc
0x1A: umulcc({{
UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}}
,{{0}},{{0}},{{0}},{{0}});//UMULcc
0x1B: smulcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1.sdw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}}
,{{0}},{{0}},{{0}},{{0}});//SMULcc
0x1C: subccc({{
INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = resTemp = Rs1 + ~(val2 + carryin) + 1;}},
{{((Rs1 & 0xFFFFFFFF + (~(val2 + carryin)) & 0xFFFFFFFF + 1) >> 31)}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (~(val2 + carryin)) >> 1) + ((Rs1 | ~(val2+carryin)) & 0x1))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);//SUBCcc
0x1D: udivxcc({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
if(val2 == 0) throw division_by_zero;
Rd.udw = Rs1.udw / val2;}}
,{{0}},{{0}},{{0}},{{0}});//UDIVXcc
0x1E: udivcc({{
UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
if(val2 == 0) throw division_by_zero;
resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2;
INT32 overflow = (resTemp<63:32> != 0);
if(overflow) rd.udw = resTemp = 0xFFFFFFFF;
else rd.udw = resTemp;}},
{{0}},
{{overflow}},
{{0}},
{{0}}
);//UDIVcc
0x1F: sdivcc({{
INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
if(val2 == 0) throw division_by_zero;
Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2;
INT32 overflow = (resTemp<63:31> != 0);
INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
if(overflow) rd.udw = resTemp = 0x7FFFFFFF;
else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000;
else rd.udw = resTemp;}},
{{0}},
{{overflow || underflow}},
{{0}},
{{0}}
);//SDIVcc
0x20: taddcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TADDcc
0x21: tsubcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{(Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TSUBcc
0x22: taddcctv({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
if(overflow) throw tag_overflow;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TADDccTV
0x23: tsubcctv({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
if(overflow) throw tag_overflow;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TSUBccTV
0x24: mulscc({{
INT64 resTemp, multiplicand = (I ? SIMM13.sdw : Rs2);
INT32 multiplier = Rs1<31:0>;
INT32 savedLSB = Rs1<0:>;
multiplier = multipler<31:1> |
((xc->regs.MiscRegs.ccrFields.iccFields.n
^ xc->regs.MiscRegs.ccrFields.iccFields.v) << 32);
if(!xc->regs.MiscRegs.yFields.value<0:>)
multiplicand = 0;
Rd = resTemp = multiplicand + multiplier;
xc->regs.MiscRegs.yFields.value = xc->regs.MiscRegs.yFields.value<31:1> | (savedLSB << 31);}},
{{((multiplicand & 0xFFFFFFFF + multiplier & 0xFFFFFFFF) >> 31)}},
{{multiplicand<31:> == multiplier<31:> && multiplier<31:> != resTemp<31:>}},
{{((multiplicand >> 1) + (multiplier >> 1) + (multiplicand & multiplier & 0x1))<63:>}},
{{multiplicand<63:> == multiplier<63:> && multiplier<63:> != resTemp<63:>}}
);//MULScc
}
format IntegerOp
{
0x25: decode X {
0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}}); //SLL
0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}}); //SLLX
}
0x26: decode X {
0x0: srl({{Rd = Rs1.udw<31:0> >> (I ? SHCNT32 : Rs2<4:0>);}}); //SRL
0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}});//SRLX
}
0x27: decode X {
0x0: sra({{Rd = Rs1.sdw<31:0> >> (I ? SHCNT32 : Rs2<4:0>);}}); //SRA
0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}});//SRAX
}
0x28: decode RS1 {
0x0: rdy({{Rd = xc->regs.MiscRegs.yFields.value;}}); //RDY
0x2: rdccr({{Rd = xc->regs.MiscRegs.ccr;}}); //RDCCR
0x3: rdasi({{Rd = xc->regs.MiscRegs.asi;}}); //RDASI
0x4: rdtick({{
if(xc->regs.MiscRegs.pstateFields.priv == 0 &&
xc->regs.MiscRegs.tickFields.npt == 1)
throw privileged_action;
Rd = xc->regs.MiscRegs.tick;
}});//RDTICK
0x5: rdpc({{Rd = xc->regs.pc;}}); //RDPC
0x6: rdfprs({{Rd = xc->regs.MiscRegs.fprs;}}); //RDFPRS
0xF: decode I {
0x0: Noop::membar({{//Membar isn't needed yet}}); //MEMBAR
0x1: Noop::stbar({{//Stbar isn/'t needed yet}}); //STBAR
}
}
0x2A: decode RS1 {
0x0: rdprtpc({{checkPriv Rd = xc->regs.MiscRegs.tpc[xc->regs.MiscRegs.tl];}});
0x1: rdprtnpc({{checkPriv Rd = xc->regs.MiscRegs.tnpc[xc->regs.MiscRegs.tl];}});
0x2: rdprtstate({{checkPriv Rd = xc->regs.MiscRegs.tstate[xc->regs.MiscRegs.tl];}});
0x3: rdprtt({{checkPriv Rd = xc->regs.MiscRegs.tt[xc->regs.MiscRegs.tl];}});
0x4: rdprtick({{checkPriv Rd = xc->regs.MiscRegs.tick;}});
0x5: rdprtba({{checkPriv Rd = xc->regs.MiscRegs.tba;}});
0x6: rdprpstate({{checkPriv Rd = xc->regs.MiscRegs.pstate;}});
0x7: rdprtl({{checkPriv Rd = xc->regs.MiscRegs.tl;}});
0x8: rdprpil({{checkPriv Rd = xc->regs.MiscRegs.pil;}});
0x9: rdprcwp({{checkPriv Rd = xc->regs.MiscRegs.cwp;}});
0xA: rdprcansave({{checkPriv Rd = xc->regs.MiscRegs.cansave;}});
0xB: rdprcanrestore({{checkPriv Rd = xc->regs.MiscRegs.canrestore;}});
0xC: rdprcleanwin({{checkPriv Rd = xc->regs.MiscRegs.cleanwin;}});
0xD: rdprotherwin({{checkPriv Rd = xc->regs.MiscRegs.otherwin;}});
0xE: rdprwstate({{checkPriv Rd = xc->regs.MiscRegs.wstate;}});
0xF: rdprfq({{throw illegal_instruction;}}); //The floating point queue isn't implemented right now.
}
0x2B: BasicOperate::flushw({{\\window toilet}}); //FLUSHW
0x2C: movcc({{
ccBank = (CC24 << 2) | (CC14 << 1) | (CC04 << 0);
switch(ccBank)
{
case 0: case 1: case 2: case 3:
throw fp_disabled;
break;
case 5: case 7:
throw illegal_instruction;
break;
case 4:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND4))
Rd = (I ? SIMM11.sdw : RS2);
break;
case 6:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND4))
Rd = (I ? SIMM11.sdw : RS2);
break;
}
}});//MOVcc
0x2D: sdivx({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
if(val2 == 0) throw division_by_zero;
Rd.sdw = Rs1.sdw / val2;
}});//SDIVX
0x2E: decode RS1 {
0x0: IntegerOp::popc({{
INT64 count = 0, val2 = (I ? SIMM13.sdw : Rs2.sdw);
UINT8 oneBits[] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}
for(unsigned int x = 0; x < 16; x++)
{
count += oneBits[val2 & 0xF];
val2 >> 4;
}
}});//POPC
}
0x2F: movr({{
UINT64 val2 = (I ? SIMM10.sdw : Rs2.sdw);
switch(RCOND)
{
case 0: case 4:
throw illegal_instruction;
break;
case 1:
if(Rs1 == 0) Rd = val2;
break;
case 2:
if(Rs1 <= 0) Rd = val2;
break;
case 3:
if(Rs1 = 0) Rd = val2;
break;
case 5:
if(Rs1 != 0) Rd = val2;
break;
case 6:
if(Rs1 > 0) Rd = val2;
break;
case 7:
if(Rs1 >= 0) Rd = val2;
break;
}
}});//MOVR
0x30: decode RD {
0x0: wry({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.y = Rs1 ^ val2;
}});//WRY
0x2: wrccr({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.ccr = Rs1 ^ val2;
}});//WRCCR
0x3: wrasi({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.asi = Rs1 ^ val2;
}});//WRASI
0x6: wrfprs({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.asi = Rs1 ^ val2;
}});//WRFPRS
0xF: Trap::sir({{software_initiated_reset}}); //SIR
}
0x31: decode FCN {
0x0: BasicOperate::saved({{\\Boogy Boogy}}); //SAVED
0x1: BasicOperate::restored({{\\Boogy Boogy}}); //RESTORED
}
0x32: decode RD {
0x0: wrprtpc({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x1: wrprtnpc({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tnpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x2: wrprtstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tstate[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x3: wrprtt({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tt[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x4: wrprtick({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tick = Rs1 ^ val2;
}});
0x5: wrprtba({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tba = Rs1 ^ val2;
}});
0x6: wrprpstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.pstate = Rs1 ^ val2;
}});
0x7: wrprtl({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tl = Rs1 ^ val2;
}});
0x8: wrprpil({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.pil = Rs1 ^ val2;
}});
0x9: wrprcwp({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cwp = Rs1 ^ val2;
}});
0xA: wrprcansave({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cansave = Rs1 ^ val2;
}});
0xB: wrprcanrestore({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.canrestore = Rs1 ^ val2;
}});
0xC: wrprcleanwin({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cleanwin = Rs1 ^ val2;
}});
0xD: wrprotherwin({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.otherwin = Rs1 ^ val2;
}});
0xE: wrprwstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.wstate = Rs1 ^ val2;
}});
}
0x34: Trap::fpop1({{Throw fp_disabled;}}); //FPOP1
0x35: Trap::fpop2({{Throw fp_disabled;}}); //FPOP2
0x38: Branch::jmpl({{//Stuff}}); //JMPL
0x39: Branch::return({{//Other Stuff}}); //RETURN
0x3A: Trap::tcc({{
switch((CC14 << 1) | (CC04 << 0))
{
case 1: case 3:
throw illegal_instruction;
case 0:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, machInst<25:28>))
throw trap_instruction;
break;
case 2:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, machInst<25:28>))
throw trap_instruction;
break;
}
}}); //Tcc
0x3B: BasicOperate::flush({{//Lala}}); //FLUSH
0x3C: BasicOperate::save({{//leprechauns); //SAVE
0x3D: BasicOperate::restore({{//Eat my short int}}); //RESTORE
0x3E: decode FCN {
0x1: BasicOperate::done({{//Done thing}}); //DONE
0x2: BasicOperate::retry({{//Retry thing}}); //RETRY
}
}
}
0x3: decode OP3 {
format Mem {
0x00: lduw({{Rd.uw = Mem.uw;}}); //LDUW
0x01: ldub({{Rd.ub = Mem.ub;}}); //LDUB
0x02: lduh({{Rd.uhw = Mem.uhw;}}); //LDUH
0x03: ldd({{
UINT64 val = Mem.udw;
setIntReg(RD & (~1), val<31:0>);
setIntReg(RD | 1, val<63:32>);
}});//LDD
0x04: stw({{Mem.sw = Rd.sw;}}); //STW
0x05: stb({{Mem.sb = Rd.sb;}}); //STB
0x06: sth({{Mem.shw = Rd.shw;}}); //STH
0x07: std({{
Mem.udw = readIntReg(RD & (~1))<31:0> | (readIntReg(RD | 1)<31:0> << 32);
}});//STD
0x08: ldsw({{Rd.sw = Mem.sw;}}); //LDSW
0x09: ldsb({{Rd.sb = Mem.sb;}}); //LDSB
0x0A: ldsh({{Rd.shw = Mem.shw;}}); //LDSH
0x0B: ldx({{Rd.udw = Mem.udw;}}); //LDX
0x0D: ldstub({{
Rd.ub = Mem.ub;
Mem.ub = 0xFF;
}}); //LDSTUB
0x0E: stx({{Rd.udw = Mem.udw;}}); //STX
0x0F: swap({{
UINT32 temp = Rd.uw;
Rd.uw = Mem.uw;
Mem.uw = temp;
}}); //SWAP
0x10: lduwa({{Rd.uw = Mem.uw;}}); //LDUWA
0x11: lduba({{Rd.ub = Mem.ub;}}); //LDUBA
0x12: lduha({{Rd.uhw = Mem.uhw;}}); //LDUHA
0x13: ldda({{
UINT64 val = Mem.udw;
setIntReg(RD & (~1), val<31:0>);
setIntReg(RD | 1, val<63:32>);
}}); //LDDA
0x14: stwa({{Mem.uw = Rd.uw;}}); //STWA
0x15: stba({{Mem.ub = Rd.ub;}}); //STBA
0x16: stha({{Mem.uhw = Rd.uhw;}}); //STHA
0x17: stda({{
Mem.udw = readIntReg(RD & (~1))<31:0> | (readIntReg(RD | 1)<31:0> << 32);
}}); //STDA
0x18: ldswa({{Rd.sw = Mem.sw;}}); //LDSWA
0x19: ldsba({{Rd.sb = Mem.sb;}}); //LDSBA
0x1A: ldsha({{Rd.shw = Mem.shw;}}); //LDSHA
0x1B: ldxa({{Rd.sdw = Mem.sdw;}}); //LDXA
0x1D: ldstuba({{
Rd.ub = Mem.ub;
Mem.ub = 0xFF;
}}); //LDSTUBA
0x1E: stxa({{Mem.sdw = Rd.sdw}}); //STXA
0x1F: swapa({{
UINT32 temp = Rd.uw;
Rd.uw = Mem.uw;
Mem.uw = temp;
}}); //SWAPA
0x20: Trap::ldf({{throw fp_disabled;}}); //LDF
0x21: decode X {
0x0: Trap::ldfsr({{throw fp_disabled;}}); //LDFSR
0x1: Trap::ldxfsr({{throw fp_disabled;}}); //LDXFSR
}
0x22: Trap::ldqf({{throw fp_disabled;}}); //LDQF
0x23: Trap::lddf({{throw fp_disabled;}}); //LDDF
0x24: Trap::stf({{throw fp_disabled;}}); //STF
0x25: decode X {
0x0: Trap::stfsr({{throw fp_disabled;}}); //STFSR
0x1: Trap::stxfsr({{throw fp_disabled;}}); //STXFSR
}
0x26: Trap::stqf({{throw fp_disabled;}}); //STQF
0x27: Trap::stdf({{throw fp_disabled;}}); //STDF
0x2D: Noop::prefetch({{ }}); //PREFETCH
0x30: Trap::ldfa({{throw fp_disabled;}}); //LDFA
0x32: Trap::ldqfa({{throw fp_disabled;}}); //LDQFA
0x33: Trap::lddfa({{throw fp_disabled;}}); //LDDFA
0x34: Trap::stfa({{throw fp_disabled;}}); //STFA
0x35: Trap::stqfa({{throw fp_disabled;}}); //STQFA
0x36: Trap::stdfa({{throw fp_disabled;}}); //STDFA
0x3C: Cas::casa(
{{UINT64 val = Mem.uw;
if(Rs2.uw == val)
Mem.uw = Rd.uw;
Rd.uw = val;
}}); //CASA
0x3D: Noop::prefetcha({{ }}); //PREFETCHA
0x3E: Cas::casxa(
{{UINT64 val = Mem.udw;
if(Rs2 == val)
Mem.udw = Rd;
Rd = val;
}}); //CASXA
}
}
}

View file

@ -0,0 +1,19 @@
//Include the basic format
//Templates from this format are used later
##include "m5/arch/sparc/isa_desc/formats/basic.format"
//Include the integerOp and integerOpCc format
##include "m5/arch/sparc/isa_desc/formats/integerop.format"
//Include the mem format
##include "m5/arch/sparc/isa_desc/formats/mem.format"
//Include the trap format
##include "m5/arch/sparc/isa_desc/formats/trap.format"
//Include the branch format
##include "m5/arch/sparc/isa_desc/formats/branch.format"
//Include the noop format
##include "m5/arch/sparc/isa_desc/formats/noop.format"

View file

@ -0,0 +1,65 @@
// Declarations for execute() methods.
def template BasicExecDeclare {{
Fault execute(%(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
// Basic instruction class declaration template.
def template BasicDeclare {{
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
{
public:
/// Constructor.
%(class_name)s(MachInst machInst);
%(BasicExecDeclare)s
};
}};
// Basic instruction class constructor template.
def template BasicConstructor {{
inline %(class_name)s::%(class_name)s(MachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
}
}};
// Basic instruction class execute method template.
def template BasicExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if(fault == No_Fault)
{
%(op_wb)s;
}
return fault;
}
}};
// Basic decode template.
def template BasicDecode {{
return new %(class_name)s(machInst);
}};
// Basic decode template, passing mnemonic in as string arg to constructor.
def template BasicDecodeWithMnemonic {{
return new %(class_name)s("%(mnemonic)s", machInst);
}};
// The most basic instruction format... used only for a few misc. insts
def format BasicOperate(code, *flags) {{
iop = InstObjParams(name, Name, 'SparcStaticInst', CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};

View file

@ -0,0 +1,66 @@
////////////////////////////////////////////////////////////////////
//
// Branch instructions
//
output header {{
/**
* Base class for integer operations.
*/
class Branch : public SparcStaticInst
{
protected:
/// Constructor
Branch(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template BranchExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Attempt to execute the instruction
try
{
checkPriv;
%(op_decl)s;
%(op_rd)s;
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Branch(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = BranchExecute.subst(iop)
}};

View file

@ -0,0 +1,110 @@
////////////////////////////////////////////////////////////////////
//
// Integer operate instructions
//
output header {{
/**
* Base class for integer operations.
*/
class IntegerOp : public SparcStaticInst
{
protected:
/// Constructor
IntegerOp(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string IntegerOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template IntegerExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//These are set to constants when the execute method
//is generated
bool useCc = ;
bool checkPriv = ;
//Attempt to execute the instruction
try
{
checkPriv;
%(op_decl)s;
%(op_rd)s;
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
if(useCc)
{
xc->regs.miscRegFile.ccrFields.iccFields.n = Rd & (1 << 63);
xc->regs.miscRegFile.ccrFields.iccFields.z = (Rd == 0);
xc->regs.miscRegFile.ccrFields.iccFields.v = ivValue;
xc->regs.miscRegFile.ccrFields.iccFields.c = icValue;
xc->regs.miscRegFile.ccrFields.xccFields.n = Rd & (1 << 31);
xc->regs.miscRegFile.ccrFields.xccFields.z = ((Rd & 0xFFFFFFFF) == 0);
xc->regs.miscRegFile.ccrFields.xccFields.v = xvValue;
xc->regs.miscRegFile.ccrFields.xccFields.c = xcValue;
}
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format IntegerOp(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
checkPriv = (code.find('checkPriv') != -1)
code.replace('checkPriv', '')
if checkPriv:
code.replace('checkPriv;', 'if(!xc->regs.miscRegFile.pstateFields.priv) throw privileged_opcode;')
else:
code.replace('checkPriv;', '')
for (marker, value) in (('ivValue', '0'), ('icValue', '0'),
('xvValue', '0'), ('xcValue', '0')):
code.replace(marker, value)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = IntegerExecute.subst(iop)
}};
// Primary format for integer operate instructions:
def format IntegerOpCc(code, icValue, ivValue, xcValue, xvValue, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
checkPriv = (code.find('checkPriv') != -1)
code.replace('checkPriv', '')
if checkPriv:
code.replace('checkPriv;', 'if(!xc->regs.miscRegFile.pstateFields.priv) throw privileged_opcode;')
else:
code.replace('checkPriv;', '')
for (marker, value) in (('ivValue', ivValue), ('icValue', icValue),
('xvValue', xvValue), ('xcValue', xcValue)):
code.replace(marker, value)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = IntegerExecute.subst(iop)
}};

View file

@ -0,0 +1,78 @@
////////////////////////////////////////////////////////////////////
//
// Mem instructions
//
output header {{
/**
* Base class for integer operations.
*/
class Mem : public SparcStaticInst
{
protected:
/// Constructor
Mem(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Mem::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template MemExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Attempt to execute the instruction
try
{
%(op_decl)s;
%(op_rd)s;
ea_code
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Mem(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = MemExecute.subst(iop)
exec_output.replace('ea_code', 'EA = I ? (R1 + SIMM13) : R1 + R2;');
}};
def format Cas(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = MemExecute.subst(iop)
exec_output.replace('ea_code', 'EA = R1;');
}};

View file

@ -0,0 +1,47 @@
////////////////////////////////////////////////////////////////////
//
// Noop instruction
//
output header {{
/**
* Base class for integer operations.
*/
class Noop : public SparcStaticInst
{
protected:
/// Constructor
Noop(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Noop::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template NoopExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Nothing to see here, move along
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Noop(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = NoopExecute.subst(iop)
}};

View file

@ -0,0 +1,53 @@
////////////////////////////////////////////////////////////////////
//
// Trap instructions
//
output header {{
/**
* Base class for integer operations.
*/
class Trap : public SparcStaticInst
{
protected:
/// Constructor
Trap(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Trap::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template TrapExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Call into the trap handler with the appropriate fault
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Trap(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = TrapExecute.subst(iop)
}};

View file

@ -0,0 +1,40 @@
////////////////////////////////////////////////////////////////////
//
// Output include file directives.
//
output header {{
#include <sstream>
#include <iostream>
#include <iomanip>
#include "cpu/static_inst.hh"
#include "traps.hh"
#include "mem/mem_req.hh" // some constructors use MemReq flags
}};
output decoder {{
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "cpu/exec_context.hh" // for Jump::branchTarget()
#include <math.h>
#if defined(linux)
#include <fenv.h>
#endif
}};
output exec {{
#include <math.h>
#if defined(linux)
#include <fenv.h>
#endif
#ifdef FULL_SYSTEM
//#include "arch/alpha/pseudo_inst.hh"
#endif
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "sim/sim_exit.hh"
}};