gpu-compute: parametrize Wavefront size

Eliminate the VSZ constant that defined the Wavefront size (in numbers of work
items); replaced it with a parameter in the GPU.py configuration script.
Changed all data structures dependent on the Wavefront size to be dynamically
sized. Legal values of Wavefront size are 16, 32, 64 for now and checked at
initialization time.
This commit is contained in:
jkalamat 2016-06-09 11:24:55 -04:00
parent e5b7b6780f
commit 3724fb15fa
25 changed files with 256 additions and 193 deletions

View file

@ -250,7 +250,8 @@ for i in xrange(n_cu):
vrfs = []
for j in xrange(options.simds_per_cu):
for k in xrange(shader.n_wf):
wavefronts.append(Wavefront(simdId = j, wf_slot_id = k))
wavefronts.append(Wavefront(simdId = j, wf_slot_id = k,
wfSize = options.wf_size))
vrfs.append(VectorRegisterFile(simd_id=j,
num_regs_per_simd=options.vreg_file_size))
compute_units[-1].wavefronts = wavefronts

View file

@ -235,7 +235,7 @@ $class_name::execute(GPUDynInstPtr gpuDynInst)
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
DestCType dest_val = $expr;
this->dest.set(w, lane, dest_val);
@ -256,7 +256,7 @@ $class_name::execute(GPUDynInstPtr gpuDynInst)
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
SrcCType src_val0 = this->src0.get<SrcCType>(w, lane);
DestCType dest_val = $expr;
@ -277,7 +277,7 @@ $class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
if ($dest_is_src_flag) {
@ -312,7 +312,7 @@ $class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
@ -346,7 +346,7 @@ $class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
DestT dest_val;
if ($dest_is_src_flag) {
@ -372,7 +372,7 @@ $class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
Wavefront *w = gpuDynInst->wavefront();
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
@ -401,7 +401,7 @@ $class_name<DestDataType, SrcDataType>::execute(GPUDynInstPtr gpuDynInst)
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
DestCType dest_val;
SrcCType src_val[$num_srcs];

View file

@ -279,7 +279,7 @@ namespace HsailISA
// taken branch
const uint32_t true_pc = getTargetPc();
VectorMask true_mask;
for (unsigned int lane = 0; lane < VSZ; ++lane) {
for (unsigned int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
true_mask[lane] = cond.get<bool>(w, lane) & curr_mask[lane];
}

View file

@ -134,7 +134,7 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
// mask off completed work-items
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
w->init_mask[lane] = 0;
}

View file

@ -457,7 +457,7 @@ namespace HsailISA
gpuDynInst->statusBitVector = gpuDynInst->exec_mask;
if (num_dest_operands > 1) {
for (int i = 0; i < VSZ; ++i)
for (int i = 0; i < gpuDynInst->computeUnit()->wfSize(); ++i)
if (gpuDynInst->exec_mask[i])
gpuDynInst->statusVector.push_back(num_dest_operands);
else
@ -466,9 +466,10 @@ namespace HsailISA
for (int k = 0; k < num_dest_operands; ++k) {
c0 *d = &((c0*)gpuDynInst->d_data)[k * VSZ];
c0 *d = &((c0*)gpuDynInst->d_data)
[k * gpuDynInst->computeUnit()->wfSize()];
for (int i = 0; i < VSZ; ++i) {
for (int i = 0; i < gpuDynInst->computeUnit()->wfSize(); ++i) {
if (gpuDynInst->exec_mask[i]) {
Addr vaddr = gpuDynInst->addr[i] + k * sizeof(c0);
@ -1004,7 +1005,7 @@ namespace HsailISA
gpuDynInst->statusBitVector = gpuDynInst->exec_mask;
if (num_src_operands > 1) {
for (int i = 0; i < VSZ; ++i)
for (int i = 0; i < gpuDynInst->computeUnit()->wfSize(); ++i)
if (gpuDynInst->exec_mask[i])
gpuDynInst->statusVector.push_back(num_src_operands);
else
@ -1012,9 +1013,10 @@ namespace HsailISA
}
for (int k = 0; k < num_src_operands; ++k) {
c0 *d = &((c0*)gpuDynInst->d_data)[k * VSZ];
c0 *d = &((c0*)gpuDynInst->d_data)
[k * gpuDynInst->computeUnit()->wfSize()];
for (int i = 0; i < VSZ; ++i) {
for (int i = 0; i < gpuDynInst->computeUnit()->wfSize(); ++i) {
if (gpuDynInst->exec_mask[i]) {
Addr vaddr = gpuDynInst->addr[i] + k * sizeof(c0);
@ -1402,7 +1404,7 @@ namespace HsailISA
c0 *e = &((c0*) gpuDynInst->a_data)[0];
c0 *f = &((c0*) gpuDynInst->x_data)[0];
for (int i = 0; i < VSZ; ++i) {
for (int i = 0; i < gpuDynInst->computeUnit()->wfSize(); ++i) {
if (gpuDynInst->exec_mask[i]) {
Addr vaddr = gpuDynInst->addr[i];

View file

@ -60,14 +60,16 @@ namespace HsailISA
typedef typename DestDataType::CType CType M5_VAR_USED;
const VectorMask &mask = w->get_pred();
uint64_t addr_vec[VSZ];
std::vector<Addr> addr_vec;
addr_vec.resize(w->computeUnit->wfSize(), (Addr)0);
this->addr.calcVector(w, addr_vec);
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
this->dest.set(w, lane, addr_vec[lane]);
}
}
addr_vec.clear();
}
template<typename MemDataType, typename DestDataType,
@ -121,8 +123,8 @@ namespace HsailISA
i->parent->findSymbol(Brig::BrigPrivateSpace, addr);
assert(se);
return w->wfSlotId * w->privSizePerItem * VSZ +
se->offset * VSZ +
return w->wfSlotId * w->privSizePerItem * w->computeUnit->wfSize() +
se->offset * w->computeUnit->wfSize() +
lane * se->size;
*/
@ -139,9 +141,11 @@ namespace HsailISA
Addr addr_div8 = addr / 8;
Addr addr_mod8 = addr % 8;
Addr ret = addr_div8 * 8 * VSZ + lane * 8 + addr_mod8 + w->privBase;
Addr ret = addr_div8 * 8 * w->computeUnit->wfSize() + lane * 8 +
addr_mod8 + w->privBase;
assert(ret < w->privBase + (w->privSizePerItem * VSZ));
assert(ret < w->privBase +
(w->privSizePerItem * w->computeUnit->wfSize()));
return ret;
}
@ -175,7 +179,7 @@ namespace HsailISA
DPRINTF(HSAIL, "ld_kernarg [%d] -> %d\n", address, val);
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
this->dest.set(w, lane, val);
}
@ -184,7 +188,7 @@ namespace HsailISA
return;
} else if (this->segment == Brig::BRIG_SEGMENT_ARG) {
uint64_t address = this->addr.calcUniform();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
MemCType val = w->readCallArgMem<MemCType>(lane, address);
@ -239,7 +243,7 @@ namespace HsailISA
// this is a complete hack to get around a compiler bug
// (the compiler currently generates global access for private
// addresses (starting from 0). We need to add the private offset)
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (m->addr[lane] < w->privSizePerItem) {
if (mask[lane]) {
// what is the size of the object we are accessing?
@ -267,7 +271,7 @@ namespace HsailISA
m->pipeId = GLBMEM_PIPE;
m->latency.set(w->computeUnit->shader->ticks(1));
{
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
// note: this calculation will NOT WORK if the compiler
// ever generates loads/stores to the same address with
// different widths (e.g., a ld_u32 addr and a ld_u16 addr)
@ -301,7 +305,7 @@ namespace HsailISA
m->pipeId = GLBMEM_PIPE;
m->latency.set(w->computeUnit->shader->ticks(1));
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
assert(m->addr[lane] + sizeof(MemCType) <= w->roSize);
m->addr[lane] += w->roBase;
@ -318,7 +322,7 @@ namespace HsailISA
m->pipeId = GLBMEM_PIPE;
m->latency.set(w->computeUnit->shader->ticks(1));
{
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
assert(m->addr[lane] < w->privSizePerItem);
@ -360,7 +364,7 @@ namespace HsailISA
if (this->segment == Brig::BRIG_SEGMENT_ARG) {
uint64_t address = this->addr.calcUniform();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType data = this->src.template get<CType>(w, lane);
DPRINTF(HSAIL, "st_arg [%d] <- %d\n", address, data);
@ -378,7 +382,7 @@ namespace HsailISA
this->addr.calcVector(w, m->addr);
if (num_src_operands == 1) {
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
((CType*)m->d_data)[lane] =
this->src.template get<CType>(w, lane);
@ -386,9 +390,9 @@ namespace HsailISA
}
} else {
for (int k= 0; k < num_src_operands; ++k) {
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
((CType*)m->d_data)[k * VSZ + lane] =
((CType*)m->d_data)[k * w->computeUnit->wfSize() + lane] =
this->src_vect[k].template get<CType>(w, lane);
}
}
@ -428,7 +432,7 @@ namespace HsailISA
// this is a complete hack to get around a compiler bug
// (the compiler currently generates global access for private
// addresses (starting from 0). We need to add the private offset)
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
if (m->addr[lane] < w->privSizePerItem) {
@ -454,7 +458,7 @@ namespace HsailISA
m->pipeId = GLBMEM_PIPE;
m->latency.set(w->computeUnit->shader->ticks(1));
{
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
assert(m->addr[lane] < w->spillSizePerItem);
@ -483,7 +487,7 @@ namespace HsailISA
m->pipeId = GLBMEM_PIPE;
m->latency.set(w->computeUnit->shader->ticks(1));
{
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
assert(m->addr[lane] < w->privSizePerItem);
m->addr[lane] = m->addr[lane] + lane *
@ -558,14 +562,14 @@ namespace HsailISA
this->addr.calcVector(w, m->addr);
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
((CType *)m->a_data)[lane] =
this->src[0].template get<CType>(w, lane);
}
// load second source operand for CAS
if (NumSrcOperands > 1) {
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
((CType*)m->x_data)[lane] =
this->src[1].template get<CType>(w, lane);
}

View file

@ -84,7 +84,7 @@ namespace HsailISA
int op = 0;
bool got_op = false;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int src_val0 = src1.get<int>(w, lane, 0);
if (got_op) {
@ -182,7 +182,7 @@ namespace HsailISA
{
#if TRACING_ON
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int src_val1 = src1.get<int>(w, lane, 1);
int src_val2 = src1.get<int>(w, lane, 2);
@ -205,7 +205,7 @@ namespace HsailISA
{
#if TRACING_ON
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int64_t src_val1 = src1.get<int64_t>(w, lane, 1);
int src_val2 = src1.get<int>(w, lane, 2);
@ -231,7 +231,7 @@ namespace HsailISA
std::string res_str;
res_str = csprintf("krl_prt (%s)\n", disassemble());
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (!(lane & 7)) {
res_str += csprintf("DB%03d: ", (int)w->wfDynId);
}
@ -270,7 +270,7 @@ namespace HsailISA
int src_val3 = -1;
res_str = csprintf("krl_prt (%s)\n", disassemble());
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (!(lane & 7)) {
res_str += csprintf("DB%03d: ", (int)w->wfDynId);
}
@ -311,7 +311,7 @@ namespace HsailISA
std::string res_str;
res_str = csprintf("krl_prt (%s)\n", disassemble());
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (!(lane & 3)) {
res_str += csprintf("DB%03d: ", (int)w->wfDynId);
}
@ -350,7 +350,7 @@ namespace HsailISA
int src_val3 = -1;
res_str = csprintf("krl_prt (%s)\n", disassemble());
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (!(lane & 3)) {
res_str += csprintf("DB%03d: ", (int)w->wfDynId);
}
@ -391,7 +391,7 @@ namespace HsailISA
std::string res_str;
res_str = csprintf("krl_prt (%s)\n", disassemble());
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (!(lane & 7)) {
res_str += csprintf("DB%03d: ", (int)w->wfDynId);
}
@ -430,7 +430,7 @@ namespace HsailISA
res_str += csprintf(" Executing on CU #%i\n", w->computeUnit->cu_id);
res_str += csprintf(" Exec mask: ");
for (int i = VSZ - 1; i >= 0; --i) {
for (int i = w->computeUnit->wfSize() - 1; i >= 0; --i) {
if (w->execMask(i))
res_str += "1";
else
@ -458,7 +458,7 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
int res = 0;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int src_val1 = src1.get<int>(w, lane, 1);
dest.set<int>(w, lane, res);
@ -477,14 +477,14 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
int res = 0;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int src_val1 = src1.get<int>(w, lane, 1);
res += src_val1;
}
}
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
dest.set<int>(w, lane, res);
}
@ -497,19 +497,19 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
int res = 0;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int src_val1 = src1.get<int>(w, lane, 1);
if (src_val1) {
if (lane < (VSZ/2)) {
if (lane < (w->computeUnit->wfSize()/2)) {
res = res | ((uint32_t)(1) << lane);
}
}
}
}
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
dest.set<int>(w, lane, res);
}
@ -521,19 +521,20 @@ namespace HsailISA
{
const VectorMask &mask = w->get_pred();
int res = 0;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int src_val1 = src1.get<int>(w, lane, 1);
if (src_val1) {
if (lane >= (VSZ/2)) {
res = res | ((uint32_t)(1) << (lane - (VSZ/2)));
if (lane >= (w->computeUnit->wfSize()/2)) {
res = res | ((uint32_t)(1) <<
(lane - (w->computeUnit->wfSize()/2)));
}
}
}
}
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
dest.set<int>(w, lane, res);
}
@ -546,7 +547,7 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
int max_cnt = 0;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
w->bar_cnt[lane]++;
@ -567,7 +568,7 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
int max_cnt = 0;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
w->bar_cnt[lane]--;
}
@ -592,7 +593,7 @@ namespace HsailISA
{
const VectorMask &mask = w->get_pred();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
int src_val1 = src1.get<int>(w, lane, 1);
panic("OpenCL Code failed assertion #%d. Triggered by lane %s",
@ -605,7 +606,7 @@ namespace HsailISA
Call::calcAddr(Wavefront *w, GPUDynInstPtr m)
{
// the address is in src1 | src2
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
int src_val1 = src1.get<int>(w, lane, 1);
int src_val2 = src1.get<int>(w, lane, 2);
Addr addr = (((Addr) src_val1) << 32) | ((Addr) src_val2);
@ -622,7 +623,7 @@ namespace HsailISA
calcAddr(w, m);
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
((int*)m->a_data)[lane] = src1.get<int>(w, lane, 3);
}
@ -661,7 +662,7 @@ namespace HsailISA
GPUDynInstPtr m = gpuDynInst;
calcAddr(w, m);
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
((int*)m->a_data)[lane] = src1.get<int>(w, lane, 1);
}
@ -736,7 +737,7 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
int src_val1 = 0;
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
src_val1 = src1.get<int>(w, lane, 1);
break;
@ -758,7 +759,7 @@ namespace HsailISA
const VectorMask &mask = w->get_pred();
unsigned mst = true;
for (int lane = VSZ - 1; lane >= 0; --lane) {
for (int lane = w->computeUnit->wfSize() - 1; lane >= 0; --lane) {
if (mask[lane]) {
dest.set<int>(w, lane, mst);
mst = false;
@ -773,7 +774,7 @@ namespace HsailISA
int res = 0;
bool got_res = false;
for (int lane = VSZ - 1; lane >= 0; --lane) {
for (int lane = w->computeUnit->wfSize() - 1; lane >= 0; --lane) {
if (mask[lane]) {
if (!got_res) {
res = src1.get<int>(w, lane, 1);

View file

@ -42,6 +42,7 @@
* Defines classes encapsulating HSAIL instruction operands.
*/
#include <limits>
#include <string>
#include "arch/hsail/Brig.h"
@ -346,6 +347,8 @@ class CRegOperand : public BaseRegOperand
template<typename T>
class ImmOperand : public BaseOperand
{
private:
uint16_t kind;
public:
T bits;
@ -355,11 +358,21 @@ class ImmOperand : public BaseOperand
template<typename OperandType>
OperandType
get()
get(Wavefront *w)
{
assert(sizeof(OperandType) <= sizeof(T));
panic_if(w == nullptr, "WF pointer needs to be set");
return *(OperandType*)&bits;
switch (kind) {
// immediate operand is WF size
case Brig::BRIG_KIND_OPERAND_WAVESIZE:
return (OperandType)w->computeUnit->wfSize();
break;
default:
return *(OperandType*)&bits;
break;
}
}
// This version of get() takes a WF* and a lane id for
@ -368,7 +381,7 @@ class ImmOperand : public BaseOperand
OperandType
get(Wavefront *w, int lane)
{
return get<OperandType>();
return get<OperandType>(w);
}
};
@ -388,16 +401,18 @@ ImmOperand<T>::init(unsigned opOffset, const BrigObject *obj)
auto cbptr = (Brig::BrigOperandConstantBytes*)brigOp;
bits = *((T*)(obj->getData(cbptr->bytes + 4)));
kind = brigOp->kind;
return true;
}
break;
case Brig::BRIG_KIND_OPERAND_WAVESIZE:
bits = VSZ;
kind = brigOp->kind;
bits = std::numeric_limits<unsigned long long>::digits;
return true;
default:
kind = Brig::BRIG_KIND_NONE;
return false;
}
}
@ -409,6 +424,7 @@ ImmOperand<T>::init_from_vect(unsigned opOffset, const BrigObject *obj, int at)
const Brig::BrigOperand *brigOp = obj->getOperand(opOffset);
if (brigOp->kind != Brig::BRIG_KIND_OPERAND_OPERAND_LIST) {
kind = Brig::BRIG_KIND_NONE;
return false;
}
@ -423,6 +439,7 @@ ImmOperand<T>::init_from_vect(unsigned opOffset, const BrigObject *obj, int at)
(const Brig::BrigOperand *)obj->getOperand(*data_offset);
if (p->kind != Brig::BRIG_KIND_OPERAND_CONSTANT_BYTES) {
kind = Brig::BRIG_KIND_NONE;
return false;
}
@ -456,7 +473,7 @@ class RegOrImmOperand : public BaseOperand
OperandType
get(Wavefront *w, int lane)
{
return is_imm ? imm_op.template get<OperandType>() :
return is_imm ? imm_op.template get<OperandType>(w) :
reg_op.template get<OperandType>(w, lane);
}
@ -571,7 +588,7 @@ class AddrOperandBase : public BaseOperand
uint64_t calcUniformBase();
public:
virtual void calcVector(Wavefront *w, uint64_t *addrVec) = 0;
virtual void calcVector(Wavefront *w, std::vector<Addr> &addrVec) = 0;
virtual uint64_t calcLane(Wavefront *w, int lane=0) = 0;
uint64_t offset;
@ -586,7 +603,7 @@ class RegAddrOperand : public AddrOperandBase
RegOperandType reg;
void init(unsigned opOffset, const BrigObject *obj);
uint64_t calcUniform();
void calcVector(Wavefront *w, uint64_t *addrVec);
void calcVector(Wavefront *w, std::vector<Addr> &addrVec);
uint64_t calcLane(Wavefront *w, int lane=0);
uint32_t opSize() { return reg.opSize(); }
bool isVectorRegister() { return reg.registerType == Enums::RT_VECTOR; }
@ -641,11 +658,12 @@ RegAddrOperand<RegOperandType>::calcUniform()
template<typename RegOperandType>
void
RegAddrOperand<RegOperandType>::calcVector(Wavefront *w, uint64_t *addrVec)
RegAddrOperand<RegOperandType>::calcVector(Wavefront *w,
std::vector<Addr> &addrVec)
{
Addr address = calcUniformBase();
for (int lane = 0; lane < VSZ; ++lane) {
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (w->execMask(lane)) {
if (reg.regFileChar == 's') {
addrVec[lane] = address + reg.template get<uint32_t>(w, lane);
@ -680,7 +698,7 @@ class NoRegAddrOperand : public AddrOperandBase
public:
void init(unsigned opOffset, const BrigObject *obj);
uint64_t calcUniform();
void calcVector(Wavefront *w, uint64_t *addrVec);
void calcVector(Wavefront *w, std::vector<Addr> &addrVec);
uint64_t calcLane(Wavefront *w, int lane=0);
std::string disassemble();
};
@ -698,11 +716,11 @@ NoRegAddrOperand::calcLane(Wavefront *w, int lane)
}
inline void
NoRegAddrOperand::calcVector(Wavefront *w, uint64_t *addrVec)
NoRegAddrOperand::calcVector(Wavefront *w, std::vector<Addr> &addrVec)
{
uint64_t address = calcUniformBase();
for (int lane = 0; lane < VSZ; ++lane)
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane)
addrVec[lane] = address;
}

View file

@ -59,6 +59,7 @@ class VectorRegisterFile(SimObject):
simd_id = Param.Int(0, 'SIMD ID associated with this VRF')
num_regs_per_simd = Param.Int(2048, 'number of vector registers per SIMD')
wfSize = Param.Int(64, 'Wavefront size (in work items)')
min_alloc = Param.Int(4, 'min number of VGPRs allocated per WF')
class Wavefront(SimObject):
@ -68,6 +69,7 @@ class Wavefront(SimObject):
simdId = Param.Int('SIMD id (0-ComputeUnit.num_SIMDs)')
wf_slot_id = Param.Int('wavefront id (0-ComputeUnit.max_wfs)')
wfSize = Param.Int(64, 'Wavefront size (in work items)')
class ComputeUnit(MemObject):
type = 'ComputeUnit'

View file

@ -238,7 +238,7 @@ ClDriver::ioctl(LiveProcess *process, ThreadContext *tc, unsigned req)
case HSA_GET_VSZ:
{
BufferArg buf(buf_addr, sizeof(uint32_t));
*((uint32_t*)buf.bufferPtr()) = VSZ;
*((uint32_t*)buf.bufferPtr()) = dispatcher->wfSize();
buf.copyOut(tc->getMemProxy());
}
break;

View file

@ -32,9 +32,10 @@
*
* Author: John Kalamatianos, Anthony Gutierrez
*/
#include "gpu-compute/compute_unit.hh"
#include <limits>
#include "base/output.hh"
#include "debug/GPUDisp.hh"
#include "debug/GPUExec.hh"
@ -76,14 +77,27 @@ ComputeUnit::ComputeUnit(const Params *p) : MemObject(p), fetchStage(p),
_masterId(p->system->getMasterId(name() + ".ComputeUnit")),
lds(*p->localDataStore), globalSeqNum(0), wavefrontSize(p->wfSize)
{
// this check will be eliminated once we have wavefront size support added
fatal_if(p->wfSize != VSZ, "Wavefront size parameter does not match VSZ");
/**
* This check is necessary because std::bitset only provides conversion
* to unsigned long or unsigned long long via to_ulong() or to_ullong().
* there are * a few places in the code where to_ullong() is used, however
* if VSZ is larger than a value the host can support then bitset will
* throw a runtime exception. we should remove all use of to_long() or
* to_ullong() so we can have VSZ greater than 64b, however until that is
* done this assert is required.
*/
fatal_if(p->wfSize > std::numeric_limits<unsigned long long>::digits ||
p->wfSize <= 0,
"WF size is larger than the host can support");
fatal_if(!isPowerOf2(wavefrontSize),
"Wavefront size should be a power of 2");
// calculate how many cycles a vector load or store will need to transfer
// its data over the corresponding buses
numCyclesPerStoreTransfer = (uint32_t)ceil((double)(VSZ * sizeof(uint32_t))
/ (double)vrfToCoalescerBusWidth);
numCyclesPerStoreTransfer =
(uint32_t)ceil((double)(wfSize() * sizeof(uint32_t)) /
(double)vrfToCoalescerBusWidth);
numCyclesPerLoadTransfer = (VSZ * sizeof(uint32_t))
numCyclesPerLoadTransfer = (wfSize() * sizeof(uint32_t))
/ coalescerToVrfBusWidth;
lastVaddrWF.resize(numSIMDs);
@ -93,24 +107,24 @@ ComputeUnit::ComputeUnit(const Params *p) : MemObject(p), fetchStage(p),
lastVaddrWF[j].resize(p->n_wf);
for (int i = 0; i < p->n_wf; ++i) {
lastVaddrWF[j][i].resize(VSZ);
lastVaddrWF[j][i].resize(wfSize());
wfList[j].push_back(p->wavefronts[j * p->n_wf + i]);
wfList[j][i]->setParent(this);
for (int k = 0; k < VSZ; ++k) {
for (int k = 0; k < wfSize(); ++k) {
lastVaddrWF[j][i][k] = 0;
}
}
}
lastVaddrPhase.resize(numSIMDs);
lastVaddrSimd.resize(numSIMDs);
for (int i = 0; i < numSIMDs; ++i) {
lastVaddrPhase[i] = LastVaddrWave();
lastVaddrSimd[i].resize(wfSize(), 0);
}
lastVaddrCU = LastVaddrWave();
lastVaddrCU.resize(wfSize());
lds.setParent(this);
@ -122,10 +136,10 @@ ComputeUnit::ComputeUnit(const Params *p) : MemObject(p), fetchStage(p),
fatal("Invalid WF execution policy (CU)\n");
}
memPort.resize(VSZ);
memPort.resize(wfSize());
// resize the tlbPort vectorArray
int tlbPort_width = perLaneTLB ? VSZ : 1;
int tlbPort_width = perLaneTLB ? wfSize() : 1;
tlbPort.resize(tlbPort_width);
cuExitCallback = new CUExitCallback(this);
@ -144,12 +158,13 @@ ComputeUnit::ComputeUnit(const Params *p) : MemObject(p), fetchStage(p),
ComputeUnit::~ComputeUnit()
{
// Delete wavefront slots
for (int j = 0; j < numSIMDs; ++j)
for (int j = 0; j < numSIMDs; ++j) {
for (int i = 0; i < shader->n_wf; ++i) {
delete wfList[j][i];
}
lastVaddrSimd[j].clear();
}
lastVaddrCU.clear();
readyList.clear();
waveStatusList.clear();
dispatchList.clear();
@ -187,27 +202,25 @@ ComputeUnit::InitializeWFContext(WFContext *wfCtx, NDRange *ndr, int cnt,
VectorMask init_mask;
init_mask.reset();
for (int k = 0; k < VSZ; ++k) {
if (k + cnt * VSZ < trueWgSizeTotal)
for (int k = 0; k < wfSize(); ++k) {
if (k + cnt * wfSize() < trueWgSizeTotal)
init_mask[k] = 1;
}
wfCtx->init_mask = init_mask.to_ullong();
wfCtx->exec_mask = init_mask.to_ullong();
for (int i = 0; i < VSZ; ++i) {
wfCtx->bar_cnt[i] = 0;
}
wfCtx->bar_cnt.resize(wfSize(), 0);
wfCtx->max_bar_cnt = 0;
wfCtx->old_barrier_cnt = 0;
wfCtx->barrier_cnt = 0;
wfCtx->privBase = ndr->q.privMemStart;
ndr->q.privMemStart += ndr->q.privMemPerItem * VSZ;
ndr->q.privMemStart += ndr->q.privMemPerItem * wfSize();
wfCtx->spillBase = ndr->q.spillMemStart;
ndr->q.spillMemStart += ndr->q.spillMemPerItem * VSZ;
ndr->q.spillMemStart += ndr->q.spillMemPerItem * wfSize();
wfCtx->pc = 0;
wfCtx->rpc = UINT32_MAX;
@ -265,10 +278,12 @@ ComputeUnit::StartWF(Wavefront *w, WFContext *wfCtx, int trueWgSize[],
w->dynwaveid = cnt;
w->init_mask = wfCtx->init_mask;
for (int k = 0; k < VSZ; ++k) {
w->workitemid[0][k] = (k+cnt*VSZ) % trueWgSize[0];
w->workitemid[1][k] = ((k + cnt * VSZ) / trueWgSize[0]) % trueWgSize[1];
w->workitemid[2][k] = (k + cnt * VSZ) / (trueWgSize[0] * trueWgSize[1]);
for (int k = 0; k < wfSize(); ++k) {
w->workitemid[0][k] = (k+cnt*wfSize()) % trueWgSize[0];
w->workitemid[1][k] =
((k + cnt * wfSize()) / trueWgSize[0]) % trueWgSize[1];
w->workitemid[2][k] =
(k + cnt * wfSize()) / (trueWgSize[0] * trueWgSize[1]);
w->workitemFlatId[k] = w->workitemid[2][k] * trueWgSize[0] *
trueWgSize[1] + w->workitemid[1][k] * trueWgSize[0] +
@ -277,9 +292,9 @@ ComputeUnit::StartWF(Wavefront *w, WFContext *wfCtx, int trueWgSize[],
w->old_barrier_cnt = wfCtx->old_barrier_cnt;
w->barrier_cnt = wfCtx->barrier_cnt;
w->barrier_slots = divCeil(trueWgSizeTotal, VSZ);
w->barrier_slots = divCeil(trueWgSizeTotal, wfSize());
for (int i = 0; i < VSZ; ++i) {
for (int i = 0; i < wfSize(); ++i) {
w->bar_cnt[i] = wfCtx->bar_cnt[i];
}
@ -315,16 +330,17 @@ ComputeUnit::StartWF(Wavefront *w, WFContext *wfCtx, int trueWgSize[],
// is this the last wavefront in the workgroup
// if set the spillWidth to be the remaining work-items
// so that the vector access is correct
if ((cnt + 1) * VSZ >= trueWgSizeTotal) {
w->spillWidth = trueWgSizeTotal - (cnt * VSZ);
if ((cnt + 1) * wfSize() >= trueWgSizeTotal) {
w->spillWidth = trueWgSizeTotal - (cnt * wfSize());
} else {
w->spillWidth = VSZ;
w->spillWidth = wfSize();
}
DPRINTF(GPUDisp, "Scheduling wfDynId/barrier_id %d/%d on CU%d: "
"WF[%d][%d]\n", _n_wave, barrier_id, cu_id, w->simdId, w->wfSlotId);
w->start(++_n_wave, ndr->q.code_ptr);
wfCtx->bar_cnt.clear();
}
void
@ -339,7 +355,7 @@ ComputeUnit::StartWorkgroup(NDRange *ndr)
// Send L1 cache acquire
// isKernel + isAcquire = Kernel Begin
if (shader->impl_kern_boundary_sync) {
GPUDynInstPtr gpuDynInst = std::make_shared<GPUDynInst>(nullptr,
GPUDynInstPtr gpuDynInst = std::make_shared<GPUDynInst>(this,
nullptr,
nullptr, 0);
@ -374,7 +390,7 @@ ComputeUnit::StartWorkgroup(NDRange *ndr)
if (w->status == Wavefront::S_STOPPED) {
// if we have scheduled all work items then stop
// scheduling wavefronts
if (cnt * VSZ >= trueWgSizeTotal)
if (cnt * wfSize() >= trueWgSizeTotal)
break;
// reserve vector registers for the scheduled wavefront
@ -420,7 +436,7 @@ ComputeUnit::ReadyWorkgroup(NDRange *ndr)
// work item of the work group
int vregDemandPerWI = ndr->q.sRegCount + (2 * ndr->q.dRegCount);
bool vregAvail = true;
int numWfs = (trueWgSizeTotal + VSZ - 1) / VSZ;
int numWfs = (trueWgSizeTotal + wfSize() - 1) / wfSize();
int freeWfSlots = 0;
// check if the total number of VGPRs required by all WFs of the WG
// fit in the VRFs of all SIMD units
@ -623,7 +639,7 @@ ComputeUnit::init()
// Setup space for call args
for (int j = 0; j < numSIMDs; ++j) {
for (int i = 0; i < shader->n_wf; ++i) {
wfList[j][i]->initCallArgMem(shader->funcargs_size);
wfList[j][i]->initCallArgMem(shader->funcargs_size, wavefrontSize);
}
}
@ -1193,15 +1209,15 @@ ComputeUnit::DTLBPort::recvTimingResp(PacketPtr pkt)
Addr last = 0;
switch(computeUnit->prefetchType) {
case Enums::PF_CU:
case Enums::PF_CU:
last = computeUnit->lastVaddrCU[mp_index];
break;
case Enums::PF_PHASE:
last = computeUnit->lastVaddrPhase[simdId][mp_index];
case Enums::PF_PHASE:
last = computeUnit->lastVaddrSimd[simdId][mp_index];
break;
case Enums::PF_WF:
case Enums::PF_WF:
last = computeUnit->lastVaddrWF[simdId][wfSlotId][mp_index];
default:
default:
break;
}
@ -1215,7 +1231,7 @@ ComputeUnit::DTLBPort::recvTimingResp(PacketPtr pkt)
DPRINTF(GPUPrefetch, "Stride is %d\n", stride);
computeUnit->lastVaddrCU[mp_index] = vaddr;
computeUnit->lastVaddrPhase[simdId][mp_index] = vaddr;
computeUnit->lastVaddrSimd[simdId][mp_index] = vaddr;
computeUnit->lastVaddrWF[simdId][wfSlotId][mp_index] = vaddr;
stride = (computeUnit->prefetchType == Enums::PF_STRIDE) ?
@ -1488,7 +1504,7 @@ ComputeUnit::regStats()
;
ldsBankConflictDist
.init(0, VSZ, 2)
.init(0, wfSize(), 2)
.name(name() + ".lds_bank_conflicts")
.desc("Number of bank conflicts per LDS memory packet")
;
@ -1499,27 +1515,28 @@ ComputeUnit::regStats()
;
pageDivergenceDist
// A wavefront can touch 1 to VSZ pages per memory instruction.
// The number of pages per bin can be configured (here it's 4).
.init(1, VSZ, 4)
// A wavefront can touch up to N pages per memory instruction where
// N is equal to the wavefront size
// The number of pages per bin can be configured (here it's 4).
.init(1, wfSize(), 4)
.name(name() + ".page_divergence_dist")
.desc("pages touched per wf (over all mem. instr.)")
;
controlFlowDivergenceDist
.init(1, VSZ, 4)
.init(1, wfSize(), 4)
.name(name() + ".warp_execution_dist")
.desc("number of lanes active per instruction (oval all instructions)")
;
activeLanesPerGMemInstrDist
.init(1, VSZ, 4)
.init(1, wfSize(), 4)
.name(name() + ".gmem_lanes_execution_dist")
.desc("number of active lanes per global memory instruction")
;
activeLanesPerLMemInstrDist
.init(1, VSZ, 4)
.init(1, wfSize(), 4)
.name(name() + ".lmem_lanes_execution_dist")
.desc("number of active lanes per local memory instruction")
;
@ -1531,7 +1548,7 @@ ComputeUnit::regStats()
numVecOpsExecuted
.name(name() + ".num_vec_ops_executed")
.desc("number of vec ops executed (e.g. VSZ/inst)")
.desc("number of vec ops executed (e.g. WF size/inst)")
;
totalCycles

View file

@ -161,22 +161,8 @@ class ComputeUnit : public MemObject
// if fixed-stride prefetching, this is the stride.
int prefetchStride;
class LastVaddrWave
{
public:
Addr vaddrs[VSZ];
Addr& operator[](int idx) {
return vaddrs[idx];
}
LastVaddrWave() {
for (int i = 0; i < VSZ; ++i)
vaddrs[i] = 0;
}
};
LastVaddrWave lastVaddrCU;
std::vector<LastVaddrWave> lastVaddrPhase;
std::vector<Addr> lastVaddrCU;
std::vector<std::vector<Addr>> lastVaddrSimd;
std::vector<std::vector<std::vector<Addr>>> lastVaddrWF;
Enums::PrefetchType prefetchType;
EXEC_POLICY exec_policy;

View file

@ -387,6 +387,12 @@ GpuDispatcher::getNumCUs()
return shader->cuList.size();
}
int
GpuDispatcher::wfSize() const
{
return shader->cuList[0]->wfSize();
}
void
GpuDispatcher::setFuncargsSize(int funcargs_size)
{

View file

@ -157,6 +157,7 @@ class GpuDispatcher : public DmaDevice
// helper functions to retrieve/set GPU attributes
int getNumCUs();
int wfSize() const;
void setFuncargsSize(int funcargs_size);
};

View file

@ -179,9 +179,9 @@ GlobalMemPipeline::doGmReturn(GPUDynInstPtr m)
int physVgpr = w->remap(dst, sizeof(c0), 1);
// save the physical VGPR index
regVec.push_back(physVgpr);
c1 *p1 = &((c1*)m->d_data)[k * VSZ];
c1 *p1 = &((c1 *)m->d_data)[k * w->computeUnit->wfSize()];
for (int i = 0; i < VSZ; ++i) {
for (int i = 0; i < w->computeUnit->wfSize(); ++i) {
if (m->exec_mask[i]) {
DPRINTF(GPUReg, "CU%d, WF[%d][%d], lane %d: "
"$%s%d <- %d global ld done (src = wavefront "

View file

@ -42,11 +42,29 @@
GPUDynInst::GPUDynInst(ComputeUnit *_cu, Wavefront *_wf,
GPUStaticInst *_staticInst, uint64_t instSeqNum)
: GPUExecContext(_cu, _wf), m_op(Enums::MO_UNDEF),
: GPUExecContext(_cu, _wf), addr(computeUnit()->wfSize(), (Addr)0),
m_op(Enums::MO_UNDEF),
memoryOrder(Enums::MEMORY_ORDER_NONE), n_reg(0), useContinuation(false),
statusBitVector(0), staticInst(_staticInst), _seqNum(instSeqNum)
{
tlbHitLevel.assign(VSZ, -1);
tlbHitLevel.assign(computeUnit()->wfSize(), -1);
d_data = new uint8_t[computeUnit()->wfSize() * 16];
a_data = new uint8_t[computeUnit()->wfSize() * 8];
x_data = new uint8_t[computeUnit()->wfSize() * 8];
for (int i = 0; i < (computeUnit()->wfSize() * 8); ++i) {
a_data[i] = 0;
x_data[i] = 0;
}
for (int i = 0; i < (computeUnit()->wfSize() * 16); ++i) {
d_data[i] = 0;
}
}
GPUDynInst::~GPUDynInst()
{
delete[] d_data;
delete[] a_data;
delete[] x_data;
}
void

View file

@ -205,7 +205,7 @@ class GPUDynInst : public GPUExecContext
public:
GPUDynInst(ComputeUnit *_cu, Wavefront *_wf, GPUStaticInst *_staticInst,
uint64_t instSeqNum);
~GPUDynInst();
void execute();
int numSrcRegOperands();
int numDstRegOperands();
@ -226,15 +226,15 @@ class GPUDynInst : public GPUExecContext
Enums::StorageClassType executedAs();
// The address of the memory operation
Addr addr[VSZ];
std::vector<Addr> addr;
Addr pAddr;
// The data to get written
uint8_t d_data[VSZ * 16];
uint8_t *d_data;
// Additional data (for atomics)
uint8_t a_data[VSZ * 8];
uint8_t *a_data;
// Additional data (for atomics)
uint8_t x_data[VSZ * 8];
uint8_t *x_data;
// The execution mask
VectorMask exec_mask;

View file

@ -148,9 +148,9 @@ LocalMemPipeline::doSmReturn(GPUDynInstPtr m)
int physVgpr = w->remap(dst,sizeof(c0),1);
// save the physical VGPR index
regVec.push_back(physVgpr);
c1 *p1 = &((c1*)m->d_data)[k * VSZ];
c1 *p1 = &((c1 *)m->d_data)[k * w->computeUnit->wfSize()];
for (int i = 0; i < VSZ; ++i) {
for (int i = 0; i < w->computeUnit->wfSize(); ++i) {
if (m->exec_mask[i]) {
// write the value into the physical VGPR. This is a purely
// functional operation. No timing is modeled.

View file

@ -37,28 +37,14 @@
#define __MISC_HH__
#include <bitset>
#include <limits>
#include <memory>
#include "base/misc.hh"
class GPUDynInst;
// wavefront size of the machine
static const int VSZ = 64;
/*
This check is necessary because std::bitset only provides conversion to
unsigned long or unsigned long long via to_ulong() or to_ullong(). there are
a few places in the code where to_ullong() is used, however if VSZ is larger
than a value the host can support then bitset will throw a runtime exception.
we should remove all use of to_long() or to_ullong() so we can have VSZ
greater than 64b, however until that is done this assert is required.
*/
static_assert(VSZ <= sizeof(unsigned long long) * 8,
"VSZ is larger than the host can support");
typedef std::bitset<VSZ> VectorMask;
typedef std::bitset<std::numeric_limits<unsigned long long>::digits> VectorMask;
typedef std::shared_ptr<GPUDynInst> GPUDynInstPtr;
class WaitClass

View file

@ -100,7 +100,7 @@ struct WFContext
{
// 32 bit values
// barrier state
int bar_cnt[VSZ];
std::vector<int> bar_cnt;
// id (which WF in the WG)
int cnt;

View file

@ -63,7 +63,7 @@ VectorRegisterFile::VectorRegisterFile(const VectorRegisterFileParams *p)
nxtBusy.clear();
nxtBusy.resize(numRegsPerSimd, 0);
vgprState->init(numRegsPerSimd);
vgprState->init(numRegsPerSimd, p->wfSize);
}
void

View file

@ -35,6 +35,8 @@
#include "gpu-compute/vector_register_state.hh"
#include <limits>
#include "gpu-compute/compute_unit.hh"
VecRegisterState::VecRegisterState() : computeUnit(nullptr)
@ -51,8 +53,19 @@ VecRegisterState::setParent(ComputeUnit *_computeUnit)
}
void
VecRegisterState::init(uint32_t _size)
VecRegisterState::init(uint32_t _size, uint32_t wf_size)
{
s_reg.resize(_size);
fatal_if(wf_size > std::numeric_limits<unsigned long long>::digits ||
wf_size <= 0,
"WF size is larger than the host can support or is zero");
fatal_if((wf_size & (wf_size - 1)) != 0,
"Wavefront size should be a power of 2");
for (int i = 0; i < s_reg.size(); ++i) {
s_reg[i].resize(wf_size, 0);
}
d_reg.resize(_size);
for (int i = 0; i < d_reg.size(); ++i) {
d_reg[i].resize(wf_size, 0);
}
}

View file

@ -51,7 +51,7 @@ class VecRegisterState
{
public:
VecRegisterState();
void init(uint32_t _size);
void init(uint32_t _size, uint32_t wf_size);
const std::string& name() const { return _name; }
void setParent(ComputeUnit *_computeUnit);
@ -93,9 +93,9 @@ class VecRegisterState
ComputeUnit *computeUnit;
std::string _name;
// 32-bit Single Precision Vector Register State
std::vector<std::array<uint32_t, VSZ>> s_reg;
std::vector<std::vector<uint32_t>> s_reg;
// 64-bit Double Precision Vector Register State
std::vector<std::array<uint64_t, VSZ>> d_reg;
std::vector<std::vector<uint64_t>> d_reg;
};
#endif // __VECTOR_REGISTER_STATE_HH__

View file

@ -55,7 +55,6 @@ Wavefront::Wavefront(const Params *p)
last_trace = 0;
simdId = p->simdId;
wfSlotId = p->wf_slot_id;
status = S_STOPPED;
reservedVectorRegs = 0;
startVgprIndex = 0;
@ -77,12 +76,20 @@ Wavefront::Wavefront(const Params *p)
mem_trace_busy = 0;
old_vgpr_tcnt = 0xffffffffffffffffll;
old_dgpr_tcnt = 0xffffffffffffffffll;
old_vgpr.resize(p->wfSize);
pendingFetch = false;
dropFetch = false;
condRegState = new ConditionRegisterState();
maxSpVgprs = 0;
maxDpVgprs = 0;
last_addr.resize(p->wfSize);
workitemFlatId.resize(p->wfSize);
old_dgpr.resize(p->wfSize);
bar_cnt.resize(p->wfSize);
for (int i = 0; i < 3; ++i) {
workitemid[i].resize(p->wfSize);
}
}
void
@ -144,6 +151,7 @@ Wavefront::~Wavefront()
{
if (callArgMem)
delete callArgMem;
delete condRegState;
}
void

View file

@ -83,6 +83,7 @@ class CallArgMem
public:
// pointer to buffer for storing function arguments
uint8_t *mem;
int wfSize;
// size of function args
int funcArgsSizePerItem;
@ -90,13 +91,13 @@ class CallArgMem
int
getLaneOffset(int lane, int addr)
{
return addr * VSZ + sizeof(CType) * lane;
return addr * wfSize + sizeof(CType) * lane;
}
CallArgMem(int func_args_size_per_item)
: funcArgsSizePerItem(func_args_size_per_item)
CallArgMem(int func_args_size_per_item, int wf_size)
: wfSize(wf_size), funcArgsSizePerItem(func_args_size_per_item)
{
mem = (uint8_t*)malloc(funcArgsSizePerItem * VSZ);
mem = (uint8_t*)malloc(funcArgsSizePerItem * wfSize);
}
~CallArgMem()
@ -192,9 +193,9 @@ class Wavefront : public SimObject
bool isOldestInstALU();
bool isOldestInstBarrier();
// used for passing spill address to DDInstGPU
uint64_t last_addr[VSZ];
uint32_t workitemid[3][VSZ];
uint32_t workitemFlatId[VSZ];
std::vector<Addr> last_addr;
std::vector<uint32_t> workitemid[3];
std::vector<uint32_t> workitemFlatId;
uint32_t workgroupid[3];
uint32_t workgroupsz[3];
uint32_t gridsz[3];
@ -230,14 +231,14 @@ class Wavefront : public SimObject
uint32_t startVgprIndex;
// Old value of destination gpr (for trace)
uint32_t old_vgpr[VSZ];
std::vector<uint32_t> old_vgpr;
// Id of destination gpr (for trace)
uint32_t old_vgpr_id;
// Tick count of last old_vgpr copy
uint64_t old_vgpr_tcnt;
// Old value of destination gpr (for trace)
uint64_t old_dgpr[VSZ];
std::vector<uint64_t> old_dgpr;
// Id of destination gpr (for trace)
uint32_t old_dgpr_id;
// Tick count of last old_vgpr copy
@ -247,7 +248,7 @@ class Wavefront : public SimObject
VectorMask init_mask;
// number of barriers this WF has joined
int bar_cnt[VSZ];
std::vector<int> bar_cnt;
int max_bar_cnt;
// Flag to stall a wave on barrier
bool stalledAtBarrier;
@ -296,9 +297,9 @@ class Wavefront : public SimObject
// argument memory for hsail call instruction
CallArgMem *callArgMem;
void
initCallArgMem(int func_args_size_per_item)
initCallArgMem(int func_args_size_per_item, int wf_size)
{
callArgMem = new CallArgMem(func_args_size_per_item);
callArgMem = new CallArgMem(func_args_size_per_item, wf_size);
}
template<typename CType>
@ -327,7 +328,6 @@ class Wavefront : public SimObject
}
void start(uint64_t _wfDynId, uint64_t _base_ptr);
void exec();
void updateResources();
int ready(itype_e type);