O3PCU: Split loads and stores that cross cache line boundaries.

When each load or store is sent to the LSQ, we check whether it will cross a
cache line boundary and, if so, split it in two. This creates two TLB
translations and two memory requests. Care has to be taken if the first
packet of a split load is sent but the second blocks the cache. Similarly,
for a store, if the first packet cannot be sent, we must store the second
one somewhere to retry later.

This modifies the LSQSenderState class to record both packets in a split
load or store.

Finally, a new const variable, HasUnalignedMemAcc, is added to each ISA
to indicate whether unaligned memory accesses are allowed. This is used
throughout the changed code so that compiler can optimise away code dealing
with split requests for ISAs that don't need them.
This commit is contained in:
Timothy M. Jones 2010-02-12 19:53:20 +00:00
parent 7fe9f92cfc
commit 29e8bcead5
11 changed files with 381 additions and 56 deletions

View file

@ -131,6 +131,9 @@ enum {
// Alpha UNOP (ldq_u r31,0(r0))
const ExtMachInst NoopMachInst = 0x2ffe0000;
// Memory accesses cannot be unaligned
const bool HasUnalignedMemAcc = false;
} // namespace AlphaISA
#endif // __ARCH_ALPHA_ISA_TRAITS_HH__

View file

@ -106,6 +106,9 @@ namespace ArmISA
const int ByteBytes = 1;
const uint32_t HighVecs = 0xFFFF0000;
// Memory accesses cannot be unaligned
const bool HasUnalignedMemAcc = false;
};
using namespace ArmISA;

View file

@ -164,6 +164,9 @@ const int ByteBytes = 1;
const int ANNOTE_NONE = 0;
const uint32_t ITOUCH_ANNOTE = 0xffffffff;
// Memory accesses cannot be unaligned
const bool HasUnalignedMemAcc = false;
};
#endif // __ARCH_MIPS_ISA_TRAITS_HH__

View file

@ -70,6 +70,9 @@ const int MachineBytes = 4;
// This is ori 0, 0, 0
const ExtMachInst NoopMachInst = 0x60000000;
// Memory accesses can be unaligned
const bool HasUnalignedMemAcc = true;
} // PowerISA namespace
#endif // __ARCH_POWER_ISA_TRAITS_HH__

View file

@ -98,6 +98,9 @@ namespace SparcISA
};
#endif
// Memory accesses cannot be unaligned
const bool HasUnalignedMemAcc = false;
}
#endif // __ARCH_SPARC_ISA_TRAITS_HH__

View file

@ -91,6 +91,9 @@ namespace X86ISA
StaticInstPtr decodeInst(ExtMachInst);
const Addr LoadAddrMask = ULL(-1);
// Memory accesses can be unaligned
const bool HasUnalignedMemAcc = true;
};
#endif // __ARCH_X86_ISATRAITS_HH__

View file

@ -131,8 +131,13 @@ class BaseDynInst : public FastAlloc, public RefCounted
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
/** Splits a request in two if it crosses a dcache block. */
void splitRequest(RequestPtr req, RequestPtr &sreqLow,
RequestPtr &sreqHigh);
/** Initiate a DTB address translation. */
void initiateTranslation(RequestPtr req, uint64_t *res,
void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
RequestPtr sreqHigh, uint64_t *res,
BaseTLB::Mode mode);
/** Finish a DTB address translation. */
@ -870,12 +875,19 @@ BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
Request *req = new Request(asid, addr, sizeof(T), flags, this->PC,
thread->contextId(), threadNumber);
initiateTranslation(req, NULL, BaseTLB::Read);
Request *sreqLow = NULL;
Request *sreqHigh = NULL;
// Only split the request if the ISA supports unaligned accesses.
if (TheISA::HasUnalignedMemAcc) {
splitRequest(req, sreqLow, sreqHigh);
}
initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
if (fault == NoFault) {
effAddr = req->getVaddr();
effAddrValid = true;
cpu->read(req, data, lqIdx);
cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
} else {
// Return a fixed value to keep simulation deterministic even
@ -909,12 +921,19 @@ BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
Request *req = new Request(asid, addr, sizeof(T), flags, this->PC,
thread->contextId(), threadNumber);
initiateTranslation(req, res, BaseTLB::Write);
Request *sreqLow = NULL;
Request *sreqHigh = NULL;
// Only split the request if the ISA supports unaligned accesses.
if (TheISA::HasUnalignedMemAcc) {
splitRequest(req, sreqLow, sreqHigh);
}
initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
if (fault == NoFault) {
effAddr = req->getVaddr();
effAddrValid = true;
cpu->write(req, data, sqIdx);
cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
}
return fault;
@ -922,14 +941,48 @@ BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
template<class Impl>
inline void
BaseDynInst<Impl>::initiateTranslation(RequestPtr req, uint64_t *res,
BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
RequestPtr &sreqHigh)
{
// Check to see if the request crosses the next level block boundary.
unsigned block_size = cpu->getDcachePort()->peerBlockSize();
Addr addr = req->getVaddr();
Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
assert(split_addr <= addr || split_addr - addr < block_size);
// Spans two blocks.
if (split_addr > addr) {
req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
}
}
template<class Impl>
inline void
BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
RequestPtr sreqHigh, uint64_t *res,
BaseTLB::Mode mode)
{
WholeTranslationState *state =
new WholeTranslationState(req, NULL, res, mode);
DataTranslation<BaseDynInst<Impl> > *trans =
new DataTranslation<BaseDynInst<Impl> >(this, state);
cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
WholeTranslationState *state =
new WholeTranslationState(req, NULL, res, mode);
// One translation if the request isn't split.
DataTranslation<BaseDynInst<Impl> > *trans =
new DataTranslation<BaseDynInst<Impl> >(this, state);
cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
} else {
WholeTranslationState *state =
new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
// Two translations when the request is split.
DataTranslation<BaseDynInst<Impl> > *stransLow =
new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
DataTranslation<BaseDynInst<Impl> > *stransHigh =
new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
}
}
template<class Impl>

View file

@ -703,18 +703,25 @@ class FullO3CPU : public BaseO3CPU
/** CPU read function, forwards read to LSQ. */
template <class T>
Fault read(RequestPtr &req, T &data, int load_idx)
Fault read(RequestPtr &req, RequestPtr &sreqLow, RequestPtr &sreqHigh,
T &data, int load_idx)
{
return this->iew.ldstQueue.read(req, data, load_idx);
return this->iew.ldstQueue.read(req, sreqLow, sreqHigh,
data, load_idx);
}
/** CPU write function, forwards write to LSQ. */
template <class T>
Fault write(RequestPtr &req, T &data, int store_idx)
Fault write(RequestPtr &req, RequestPtr &sreqLow, RequestPtr &sreqHigh,
T &data, int store_idx)
{
return this->iew.ldstQueue.write(req, data, store_idx);
return this->iew.ldstQueue.write(req, sreqLow, sreqHigh,
data, store_idx);
}
/** Get the dcache port (used to find block size for translations). */
Port *getDcachePort() { return this->iew.ldstQueue.getDcachePort(); }
Addr lockAddr;
/** Temporary fix for the lock flag, works in the UP case. */

View file

@ -270,15 +270,19 @@ class LSQ {
void dumpInsts(ThreadID tid)
{ thread[tid].dumpInsts(); }
/** Executes a read operation, using the load specified at the load index. */
template <class T>
Fault read(RequestPtr req, T &data, int load_idx);
/** Executes a store operation, using the store specified at the store
* index.
/** Executes a read operation, using the load specified at the load
* index.
*/
template <class T>
Fault write(RequestPtr req, T &data, int store_idx);
Fault read(RequestPtr req, RequestPtr sreqLow, RequestPtr sreqHigh,
T &data, int load_idx);
/** Executes a store operation, using the store specified at the store
* index.
*/
template <class T>
Fault write(RequestPtr req, RequestPtr sreqLow, RequestPtr sreqHigh,
T &data, int store_idx);
/** The CPU pointer. */
O3CPU *cpu;
@ -369,21 +373,23 @@ class LSQ {
template <class Impl>
template <class T>
Fault
LSQ<Impl>::read(RequestPtr req, T &data, int load_idx)
LSQ<Impl>::read(RequestPtr req, RequestPtr sreqLow, RequestPtr sreqHigh,
T &data, int load_idx)
{
ThreadID tid = req->threadId();
return thread[tid].read(req, data, load_idx);
return thread[tid].read(req, sreqLow, sreqHigh, data, load_idx);
}
template <class Impl>
template <class T>
Fault
LSQ<Impl>::write(RequestPtr req, T &data, int store_idx)
LSQ<Impl>::write(RequestPtr req, RequestPtr sreqLow, RequestPtr sreqHigh,
T &data, int store_idx)
{
ThreadID tid = req->threadId();
return thread[tid].write(req, data, store_idx);
return thread[tid].write(req, sreqLow, sreqHigh, data, store_idx);
}
#endif // __CPU_O3_LSQ_HH__

View file

@ -216,12 +216,18 @@ class LSQUnit {
/** Writes back the instruction, sending it to IEW. */
void writeback(DynInstPtr &inst, PacketPtr pkt);
/** Writes back a store that couldn't be completed the previous cycle. */
void writebackPendingStore();
/** Handles completing the send of a store to memory. */
void storePostSend(PacketPtr pkt);
/** Completes the store at the specified index. */
void completeStore(int store_idx);
/** Attempts to send a store to the cache. */
bool sendStore(PacketPtr data_pkt);
/** Increments the given store index (circular queue). */
inline void incrStIdx(int &store_idx);
/** Decrements the given store index (circular queue). */
@ -254,7 +260,8 @@ class LSQUnit {
public:
/** Default constructor. */
LSQSenderState()
: noWB(false)
: noWB(false), isSplit(false), pktToSend(false), outstanding(1),
mainPkt(NULL), pendingPacket(NULL)
{ }
/** Instruction who initiated the access to memory. */
@ -265,6 +272,19 @@ class LSQUnit {
int idx;
/** Whether or not the instruction will need to writeback. */
bool noWB;
/** Whether or not this access is split in two. */
bool isSplit;
/** Whether or not there is a packet that needs sending. */
bool pktToSend;
/** Number of outstanding packets to complete. */
int outstanding;
/** The main packet from a split load, used during writeback. */
PacketPtr mainPkt;
/** A second packet from a split store that needs sending. */
PacketPtr pendingPacket;
/** Completes a packet and returns whether the access is finished. */
inline bool complete() { return --outstanding == 0; }
};
/** Writeback event, specifically for when stores forward data to loads. */
@ -302,8 +322,8 @@ class LSQUnit {
/** Constructs a store queue entry for a given instruction. */
SQEntry(DynInstPtr &_inst)
: inst(_inst), req(NULL), size(0),
canWB(0), committed(0), completed(0)
: inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
isSplit(0), canWB(0), committed(0), completed(0)
{
std::memset(data, 0, sizeof(data));
}
@ -312,10 +332,15 @@ class LSQUnit {
DynInstPtr inst;
/** The request for the store. */
RequestPtr req;
/** The split requests for the store. */
RequestPtr sreqLow;
RequestPtr sreqHigh;
/** The size of the store. */
int size;
/** The store data. */
char data[sizeof(IntReg)];
/** Whether or not the store is split into two requests. */
bool isSplit;
/** Whether or not the store can writeback. */
bool canWB;
/** Whether or not the store is committed. */
@ -406,6 +431,13 @@ class LSQUnit {
/** The oldest load that caused a memory ordering violation. */
DynInstPtr memDepViolator;
/** Whether or not there is a packet that couldn't be sent because of
* a lack of cache ports. */
bool hasPendingPkt;
/** The packet that is pending free cache ports. */
PacketPtr pendingPkt;
// Will also need how many read/write ports the Dcache has. Or keep track
// of that in stage that is one level up, and only call executeLoad/Store
// the appropriate number of times.
@ -443,11 +475,13 @@ class LSQUnit {
public:
/** Executes the load at the given index. */
template <class T>
Fault read(Request *req, T &data, int load_idx);
Fault read(Request *req, Request *sreqLow, Request *sreqHigh, T &data,
int load_idx);
/** Executes the store at the given index. */
template <class T>
Fault write(Request *req, T &data, int store_idx);
Fault write(Request *req, Request *sreqLow, Request *sreqHigh, T &data,
int store_idx);
/** Returns the index of the head load instruction. */
int getLoadHead() { return loadHead; }
@ -482,7 +516,8 @@ class LSQUnit {
template <class Impl>
template <class T>
Fault
LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
T &data, int load_idx)
{
DynInstPtr load_inst = loadQueue[load_idx];
@ -503,6 +538,10 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
// memory. This is quite ugly. @todo: Figure out the proper
// place to really handle request deletes.
delete req;
if (TheISA::HasUnalignedMemAcc && sreqLow) {
delete sreqLow;
delete sreqHigh;
}
return TheISA::genMachineCheckFault();
}
@ -512,10 +551,12 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
int store_size = 0;
DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
"storeHead: %i addr: %#x\n",
load_idx, store_idx, storeHead, req->getPaddr());
"storeHead: %i addr: %#x%s\n",
load_idx, store_idx, storeHead, req->getPaddr(),
sreqLow ? " split" : "");
if (req->isLLSC()) {
assert(!sreqLow);
// Disable recording the result temporarily. Writing to misc
// regs normally updates the result, but this is not the
// desired behavior when handling store conditionals.
@ -587,6 +628,12 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
// @todo: Need to make this a parameter.
cpu->schedule(wb, curTick);
// Don't need to do anything special for split loads.
if (TheISA::HasUnalignedMemAcc && sreqLow) {
delete sreqLow;
delete sreqHigh;
}
++lsqForwLoads;
return NoFault;
} else if ((store_has_lower_limit && lower_load_has_store_part) ||
@ -630,6 +677,10 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
// memory. This is quite ugly. @todo: Figure out the
// proper place to really handle request deletes.
delete req;
if (TheISA::HasUnalignedMemAcc && sreqLow) {
delete sreqLow;
delete sreqHigh;
}
return NoFault;
}
@ -645,12 +696,14 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
++usedPorts;
// if we the cache is not blocked, do cache access
bool completedFirst = false;
if (!lsq->cacheBlocked()) {
PacketPtr data_pkt =
new Packet(req,
(req->isLLSC() ?
MemCmd::LoadLockedReq : MemCmd::ReadReq),
Packet::Broadcast);
MemCmd command =
req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast);
PacketPtr fst_data_pkt = NULL;
PacketPtr snd_data_pkt = NULL;
data_pkt->dataStatic(load_inst->memData);
LSQSenderState *state = new LSQSenderState;
@ -659,18 +712,66 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
state->inst = load_inst;
data_pkt->senderState = state;
if (!dcachePort->sendTiming(data_pkt)) {
if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
// Point the first packet at the main data packet.
fst_data_pkt = data_pkt;
} else {
// Create the split packets.
fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
fst_data_pkt->dataStatic(load_inst->memData);
snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
fst_data_pkt->senderState = state;
snd_data_pkt->senderState = state;
state->isSplit = true;
state->outstanding = 2;
state->mainPkt = data_pkt;
}
if (!dcachePort->sendTiming(fst_data_pkt)) {
// Delete state and data packet because a load retry
// initiates a pipeline restart; it does not retry.
delete state;
delete data_pkt->req;
delete data_pkt;
if (TheISA::HasUnalignedMemAcc && sreqLow) {
delete fst_data_pkt->req;
delete fst_data_pkt;
delete snd_data_pkt->req;
delete snd_data_pkt;
}
req = NULL;
// If the access didn't succeed, tell the LSQ by setting
// the retry thread id.
lsq->setRetryTid(lsqID);
} else if (TheISA::HasUnalignedMemAcc && sreqLow) {
completedFirst = true;
// The first packet was sent without problems, so send this one
// too. If there is a problem with this packet then the whole
// load will be squashed, so indicate this to the state object.
// The first packet will return in completeDataAccess and be
// handled there.
++usedPorts;
if (!dcachePort->sendTiming(snd_data_pkt)) {
// The main packet will be deleted in completeDataAccess.
delete snd_data_pkt->req;
delete snd_data_pkt;
state->complete();
req = NULL;
lsq->setRetryTid(lsqID);
}
}
}
@ -679,6 +780,10 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
if (lsq->cacheBlocked()) {
if (req)
delete req;
if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
delete sreqLow;
delete sreqHigh;
}
++lsqCacheBlocked;
@ -703,7 +808,8 @@ LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
template <class Impl>
template <class T>
Fault
LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
T &data, int store_idx)
{
assert(storeQueue[store_idx].inst);
@ -713,6 +819,8 @@ LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
storeQueue[store_idx].inst->seqNum);
storeQueue[store_idx].req = req;
storeQueue[store_idx].sreqLow = sreqLow;
storeQueue[store_idx].sreqHigh = sreqHigh;
storeQueue[store_idx].size = sizeof(T);
assert(sizeof(T) <= sizeof(storeQueue[store_idx].data));

View file

@ -85,11 +85,23 @@ LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
assert(!pkt->wasNacked());
// If this is a split access, wait until all packets are received.
if (TheISA::HasUnalignedMemAcc && !state->complete()) {
delete pkt->req;
delete pkt;
return;
}
if (isSwitchedOut() || inst->isSquashed()) {
iewStage->decrWb(inst->seqNum);
} else {
if (!state->noWB) {
writeback(inst, pkt);
if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
!state->isLoad) {
writeback(inst, pkt);
} else {
writeback(inst, state->mainPkt);
}
}
if (inst->isStore()) {
@ -97,6 +109,10 @@ LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
}
}
if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
delete state->mainPkt->req;
delete state->mainPkt;
}
delete state;
delete pkt->req;
delete pkt;
@ -106,7 +122,7 @@ template <class Impl>
LSQUnit<Impl>::LSQUnit()
: loads(0), stores(0), storesToWB(0), stalled(false),
isStoreBlocked(false), isLoadBlocked(false),
loadBlockedHandled(false)
loadBlockedHandled(false), hasPendingPkt(false)
{
}
@ -603,10 +619,32 @@ LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
}
}
template <class Impl>
void
LSQUnit<Impl>::writebackPendingStore()
{
if (hasPendingPkt) {
assert(pendingPkt != NULL);
// If the cache is blocked, this will store the packet for retry.
if (sendStore(pendingPkt)) {
storePostSend(pendingPkt);
}
pendingPkt = NULL;
hasPendingPkt = false;
}
}
template <class Impl>
void
LSQUnit<Impl>::writebackStores()
{
// First writeback the second packet from any split store that didn't
// complete last cycle because there weren't enough cache ports available.
if (TheISA::HasUnalignedMemAcc) {
writebackPendingStore();
}
while (storesToWB > 0 &&
storeWBIdx != storeTail &&
storeQueue[storeWBIdx].inst &&
@ -640,6 +678,11 @@ LSQUnit<Impl>::writebackStores()
assert(storeQueue[storeWBIdx].req);
assert(!storeQueue[storeWBIdx].committed);
if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
assert(storeQueue[storeWBIdx].sreqLow);
assert(storeQueue[storeWBIdx].sreqHigh);
}
DynInstPtr inst = storeQueue[storeWBIdx].inst;
Request *req = storeQueue[storeWBIdx].req;
@ -653,15 +696,41 @@ LSQUnit<Impl>::writebackStores()
MemCmd command =
req->isSwap() ? MemCmd::SwapReq :
(req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
PacketPtr data_pkt = new Packet(req, command,
Packet::Broadcast);
data_pkt->dataStatic(inst->memData);
PacketPtr data_pkt;
PacketPtr snd_data_pkt = NULL;
LSQSenderState *state = new LSQSenderState;
state->isLoad = false;
state->idx = storeWBIdx;
state->inst = inst;
data_pkt->senderState = state;
if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
// Build a single data packet if the store isn't split.
data_pkt = new Packet(req, command, Packet::Broadcast);
data_pkt->dataStatic(inst->memData);
data_pkt->senderState = state;
} else {
RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
// Create two packets if the store is split in two.
data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
data_pkt->dataStatic(inst->memData);
snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
data_pkt->senderState = state;
snd_data_pkt->senderState = state;
state->isSplit = true;
state->outstanding = 2;
// Can delete the main request now.
delete req;
req = sreqLow;
}
DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%#x "
"to Addr:%#x, data:%#x [sn:%lli]\n",
@ -671,6 +740,7 @@ LSQUnit<Impl>::writebackStores()
// @todo: Remove this SC hack once the memory system handles it.
if (inst->isStoreConditional()) {
assert(!storeQueue[storeWBIdx].isSplit);
// Disable recording the result temporarily. Writing to
// misc regs normally updates the result, but this is not
// the desired behavior when handling store conditionals.
@ -694,18 +764,44 @@ LSQUnit<Impl>::writebackStores()
state->noWB = true;
}
if (!dcachePort->sendTiming(data_pkt)) {
// Need to handle becoming blocked on a store.
if (!sendStore(data_pkt)) {
DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
"retry later\n",
inst->seqNum);
isStoreBlocked = true;
++lsqCacheBlocked;
assert(retryPkt == NULL);
retryPkt = data_pkt;
lsq->setRetryTid(lsqID);
// Need to store the second packet, if split.
if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
state->pktToSend = true;
state->pendingPacket = snd_data_pkt;
}
} else {
storePostSend(data_pkt);
// If split, try to send the second packet too
if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
assert(snd_data_pkt);
// Ensure there are enough ports to use.
if (usedPorts < cachePorts) {
++usedPorts;
if (sendStore(snd_data_pkt)) {
storePostSend(snd_data_pkt);
} else {
DPRINTF(IEW, "D-Cache became blocked when writing"
" [sn:%lli] second packet, will retry later\n",
inst->seqNum);
}
} else {
// Store the packet for when there's free ports.
assert(pendingPkt == NULL);
pendingPkt = snd_data_pkt;
hasPendingPkt = true;
}
} else {
// Not a split store.
storePostSend(data_pkt);
}
}
}
@ -808,6 +904,13 @@ LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
// memory. This is quite ugly. @todo: Figure out the proper
// place to really handle request deletes.
delete storeQueue[store_idx].req;
if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
delete storeQueue[store_idx].sreqLow;
delete storeQueue[store_idx].sreqHigh;
storeQueue[store_idx].sreqLow = NULL;
storeQueue[store_idx].sreqHigh = NULL;
}
storeQueue[store_idx].req = NULL;
--stores;
@ -926,6 +1029,22 @@ LSQUnit<Impl>::completeStore(int store_idx)
#endif
}
template <class Impl>
bool
LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
{
if (!dcachePort->sendTiming(data_pkt)) {
// Need to handle becoming blocked on a store.
isStoreBlocked = true;
++lsqCacheBlocked;
assert(retryPkt == NULL);
retryPkt = data_pkt;
lsq->setRetryTid(lsqID);
return false;
}
return true;
}
template <class Impl>
void
LSQUnit<Impl>::recvRetry()
@ -935,10 +1054,24 @@ LSQUnit<Impl>::recvRetry()
assert(retryPkt != NULL);
if (dcachePort->sendTiming(retryPkt)) {
storePostSend(retryPkt);
LSQSenderState *state =
dynamic_cast<LSQSenderState *>(retryPkt->senderState);
// Don't finish the store unless this is the last packet.
if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
storePostSend(retryPkt);
}
retryPkt = NULL;
isStoreBlocked = false;
lsq->setRetryTid(InvalidThreadID);
// Send any outstanding packet.
if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
assert(state->pendingPacket);
if (sendStore(state->pendingPacket)) {
storePostSend(state->pendingPacket);
}
}
} else {
// Still blocked!
++lsqCacheBlocked;