gem5/src/arch/x86/process.cc

725 lines
25 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2007 The Hewlett-Packard Development Company
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
*/
#include "arch/x86/regs/misc.hh"
#include "arch/x86/regs/segment.hh"
2011-04-15 19:44:06 +02:00
#include "arch/x86/isa_traits.hh"
#include "arch/x86/process.hh"
#include "arch/x86/types.hh"
#include "base/loader/elf_object.hh"
2011-04-15 19:44:06 +02:00
#include "base/loader/object_file.hh"
#include "base/misc.hh"
#include "base/trace.hh"
#include "cpu/thread_context.hh"
#include "mem/page_table.hh"
#include "mem/translating_port.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_emul.hh"
#include "sim/system.hh"
using namespace std;
using namespace X86ISA;
static const int ArgumentReg[] = {
INTREG_RDI,
INTREG_RSI,
INTREG_RDX,
//This argument register is r10 for syscalls and rcx for C.
INTREG_R10W,
//INTREG_RCX,
INTREG_R8W,
INTREG_R9W
};
static const int NumArgumentRegs = sizeof(ArgumentReg) / sizeof(const int);
static const int ArgumentReg32[] = {
INTREG_EBX,
INTREG_ECX,
INTREG_EDX,
INTREG_ESI,
INTREG_EDI,
};
static const int NumArgumentRegs32 = sizeof(ArgumentReg) / sizeof(const int);
X86LiveProcess::X86LiveProcess(LiveProcessParams * params, ObjectFile *objFile,
SyscallDesc *_syscallDescs, int _numSyscallDescs) :
LiveProcess(params, objFile), syscallDescs(_syscallDescs),
numSyscallDescs(_numSyscallDescs)
{
brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
brk_point = roundUp(brk_point, VMPageSize);
}
X86_64LiveProcess::X86_64LiveProcess(LiveProcessParams *params,
ObjectFile *objFile, SyscallDesc *_syscallDescs,
int _numSyscallDescs) :
X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
{
vsyscallPage.base = 0xffffffffff600000ULL;
vsyscallPage.size = VMPageSize;
vsyscallPage.vtimeOffset = 0x400;
vsyscallPage.vgettimeofdayOffset = 0x410;
// Set up stack. On X86_64 Linux, stack goes from the top of memory
// downward, less the hole for the kernel address space plus one page
// for undertermined purposes.
stack_base = (Addr)0x7FFFFFFFF000ULL;
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
// Set up region for mmaps. This was determined empirically and may not
// always be correct.
mmap_start = mmap_end = (Addr)0x2aaaaaaab000ULL;
}
void
I386LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
{
ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors. This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-31 08:07:20 +01:00
TheISA::PCState pc = tc->pcState();
Addr eip = pc.pc();
if (eip >= vsyscallPage.base &&
eip < vsyscallPage.base + vsyscallPage.size) {
ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors. This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-31 08:07:20 +01:00
pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
tc->pcState(pc);
}
X86LiveProcess::syscall(callnum, tc);
}
I386LiveProcess::I386LiveProcess(LiveProcessParams *params,
ObjectFile *objFile, SyscallDesc *_syscallDescs,
int _numSyscallDescs) :
X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
{
_gdtStart = ULL(0x100000000);
_gdtSize = VMPageSize;
vsyscallPage.base = 0xffffe000ULL;
vsyscallPage.size = VMPageSize;
vsyscallPage.vsyscallOffset = 0x400;
vsyscallPage.vsysexitOffset = 0x410;
stack_base = vsyscallPage.base;
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
// Set up region for mmaps. This was determined empirically and may not
// always be correct.
mmap_start = mmap_end = (Addr)0xf7ffe000ULL;
}
SyscallDesc*
X86LiveProcess::getDesc(int callnum)
{
if (callnum < 0 || callnum >= numSyscallDescs)
return NULL;
return &syscallDescs[callnum];
}
void
X86_64LiveProcess::initState()
{
X86LiveProcess::initState();
argsInit(sizeof(uint64_t), VMPageSize);
// Set up the vsyscall page for this process.
pTable->allocate(vsyscallPage.base, vsyscallPage.size);
uint8_t vtimeBlob[] = {
0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
0x0f,0x05, // syscall
0xc3 // retq
};
initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
vtimeBlob, sizeof(vtimeBlob));
uint8_t vgettimeofdayBlob[] = {
0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
0x0f,0x05, // syscall
0xc3 // retq
};
initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
for (int i = 0; i < contextIds.size(); i++) {
ThreadContext * tc = system->getThreadContext(contextIds[i]);
SegAttr dataAttr = 0;
dataAttr.dpl = 3;
dataAttr.unusable = 0;
dataAttr.defaultSize = 1;
dataAttr.longMode = 1;
dataAttr.avl = 0;
dataAttr.granularity = 1;
dataAttr.present = 1;
dataAttr.type = 3;
dataAttr.writable = 1;
dataAttr.readable = 1;
dataAttr.expandDown = 0;
dataAttr.system = 1;
//Initialize the segment registers.
for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
}
SegAttr csAttr = 0;
csAttr.dpl = 3;
csAttr.unusable = 0;
csAttr.defaultSize = 0;
csAttr.longMode = 1;
csAttr.avl = 0;
csAttr.granularity = 1;
csAttr.present = 1;
csAttr.type = 10;
csAttr.writable = 0;
csAttr.readable = 1;
csAttr.expandDown = 0;
csAttr.system = 1;
tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
Efer efer = 0;
efer.sce = 1; // Enable system call extensions.
efer.lme = 1; // Enable long mode.
efer.lma = 1; // Activate long mode.
efer.nxe = 1; // Enable nx support.
efer.svme = 0; // Disable svm support for now. It isn't implemented.
efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
tc->setMiscReg(MISCREG_EFER, efer);
//Set up the registers that describe the operating mode.
CR0 cr0 = 0;
cr0.pg = 1; // Turn on paging.
cr0.cd = 0; // Don't disable caching.
cr0.nw = 0; // This is bit is defined to be ignored.
cr0.am = 0; // No alignment checking
cr0.wp = 0; // Supervisor mode can write read only pages
cr0.ne = 1;
cr0.et = 1; // This should always be 1
cr0.ts = 0; // We don't do task switching, so causing fp exceptions
// would be pointless.
cr0.em = 0; // Allow x87 instructions to execute natively.
cr0.mp = 1; // This doesn't really matter, but the manual suggests
// setting it to one.
cr0.pe = 1; // We're definitely in protected mode.
tc->setMiscReg(MISCREG_CR0, cr0);
2009-08-18 05:25:14 +02:00
tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
}
}
void
I386LiveProcess::initState()
{
X86LiveProcess::initState();
argsInit(sizeof(uint32_t), VMPageSize);
/*
* Set up a GDT for this process. The whole GDT wouldn't really be for
* this process, but the only parts we care about are.
*/
pTable->allocate(_gdtStart, _gdtSize);
uint64_t zero = 0;
assert(_gdtSize % sizeof(zero) == 0);
for (Addr gdtCurrent = _gdtStart;
gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
initVirtMem->write(gdtCurrent, zero);
}
// Set up the vsyscall page for this process.
pTable->allocate(vsyscallPage.base, vsyscallPage.size);
uint8_t vsyscallBlob[] = {
0x51, // push %ecx
0x52, // push %edp
0x55, // push %ebp
0x89, 0xe5, // mov %esp, %ebp
0x0f, 0x34 // sysenter
};
initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
vsyscallBlob, sizeof(vsyscallBlob));
uint8_t vsysexitBlob[] = {
0x5d, // pop %ebp
0x5a, // pop %edx
0x59, // pop %ecx
0xc3 // ret
};
initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
vsysexitBlob, sizeof(vsysexitBlob));
for (int i = 0; i < contextIds.size(); i++) {
ThreadContext * tc = system->getThreadContext(contextIds[i]);
SegAttr dataAttr = 0;
dataAttr.dpl = 3;
dataAttr.unusable = 0;
dataAttr.defaultSize = 1;
dataAttr.longMode = 0;
dataAttr.avl = 0;
dataAttr.granularity = 1;
dataAttr.present = 1;
dataAttr.type = 3;
dataAttr.writable = 1;
dataAttr.readable = 1;
dataAttr.expandDown = 0;
dataAttr.system = 1;
//Initialize the segment registers.
for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
}
SegAttr csAttr = 0;
csAttr.dpl = 3;
csAttr.unusable = 0;
csAttr.defaultSize = 1;
csAttr.longMode = 0;
csAttr.avl = 0;
csAttr.granularity = 1;
csAttr.present = 1;
csAttr.type = 0xa;
csAttr.writable = 0;
csAttr.readable = 1;
csAttr.expandDown = 0;
csAttr.system = 1;
tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
// Set the LDT selector to 0 to deactivate it.
tc->setMiscRegNoEffect(MISCREG_TSL, 0);
Efer efer = 0;
efer.sce = 1; // Enable system call extensions.
efer.lme = 1; // Enable long mode.
efer.lma = 0; // Deactivate long mode.
efer.nxe = 1; // Enable nx support.
efer.svme = 0; // Disable svm support for now. It isn't implemented.
efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
tc->setMiscReg(MISCREG_EFER, efer);
//Set up the registers that describe the operating mode.
CR0 cr0 = 0;
cr0.pg = 1; // Turn on paging.
cr0.cd = 0; // Don't disable caching.
cr0.nw = 0; // This is bit is defined to be ignored.
cr0.am = 0; // No alignment checking
cr0.wp = 0; // Supervisor mode can write read only pages
cr0.ne = 1;
cr0.et = 1; // This should always be 1
cr0.ts = 0; // We don't do task switching, so causing fp exceptions
// would be pointless.
cr0.em = 0; // Allow x87 instructions to execute natively.
cr0.mp = 1; // This doesn't really matter, but the manual suggests
// setting it to one.
cr0.pe = 1; // We're definitely in protected mode.
tc->setMiscReg(MISCREG_CR0, cr0);
2009-08-18 05:25:14 +02:00
tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
}
}
template<class IntType>
void
X86LiveProcess::argsInit(int pageSize,
std::vector<AuxVector<IntType> > extraAuxvs)
{
int intSize = sizeof(IntType);
typedef AuxVector<IntType> auxv_t;
std::vector<auxv_t> auxv = extraAuxvs;
string filename;
if(argv.size() < 1)
filename = "";
else
filename = argv[0];
//We want 16 byte alignment
uint64_t align = 16;
// load object file into target memory
objFile->loadSections(initVirtMem);
enum X86CpuFeature {
X86_OnboardFPU = 1 << 0,
X86_VirtualModeExtensions = 1 << 1,
X86_DebuggingExtensions = 1 << 2,
X86_PageSizeExtensions = 1 << 3,
X86_TimeStampCounter = 1 << 4,
X86_ModelSpecificRegisters = 1 << 5,
X86_PhysicalAddressExtensions = 1 << 6,
X86_MachineCheckExtensions = 1 << 7,
X86_CMPXCHG8Instruction = 1 << 8,
X86_OnboardAPIC = 1 << 9,
X86_SYSENTER_SYSEXIT = 1 << 11,
X86_MemoryTypeRangeRegisters = 1 << 12,
X86_PageGlobalEnable = 1 << 13,
X86_MachineCheckArchitecture = 1 << 14,
X86_CMOVInstruction = 1 << 15,
X86_PageAttributeTable = 1 << 16,
X86_36BitPSEs = 1 << 17,
X86_ProcessorSerialNumber = 1 << 18,
X86_CLFLUSHInstruction = 1 << 19,
X86_DebugTraceStore = 1 << 21,
X86_ACPIViaMSR = 1 << 22,
X86_MultimediaExtensions = 1 << 23,
X86_FXSAVE_FXRSTOR = 1 << 24,
X86_StreamingSIMDExtensions = 1 << 25,
X86_StreamingSIMDExtensions2 = 1 << 26,
X86_CPUSelfSnoop = 1 << 27,
X86_HyperThreading = 1 << 28,
X86_AutomaticClockControl = 1 << 29,
X86_IA64Processor = 1 << 30
};
//Setup the auxilliary vectors. These will already have endian conversion.
//Auxilliary vectors are loaded only for elf formatted executables.
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if(elfObject)
{
uint64_t features =
X86_OnboardFPU |
X86_VirtualModeExtensions |
X86_DebuggingExtensions |
X86_PageSizeExtensions |
X86_TimeStampCounter |
X86_ModelSpecificRegisters |
X86_PhysicalAddressExtensions |
X86_MachineCheckExtensions |
X86_CMPXCHG8Instruction |
X86_OnboardAPIC |
X86_SYSENTER_SYSEXIT |
X86_MemoryTypeRangeRegisters |
X86_PageGlobalEnable |
X86_MachineCheckArchitecture |
X86_CMOVInstruction |
X86_PageAttributeTable |
X86_36BitPSEs |
// X86_ProcessorSerialNumber |
X86_CLFLUSHInstruction |
// X86_DebugTraceStore |
// X86_ACPIViaMSR |
X86_MultimediaExtensions |
X86_FXSAVE_FXRSTOR |
X86_StreamingSIMDExtensions |
X86_StreamingSIMDExtensions2 |
// X86_CPUSelfSnoop |
// X86_HyperThreading |
// X86_AutomaticClockControl |
// X86_IA64Processor |
0;
//Bits which describe the system hardware capabilities
//XXX Figure out what these should be
auxv.push_back(auxv_t(M5_AT_HWCAP, features));
//The system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::VMPageSize));
//Frequency at which times() increments
//Defined to be 100 in the kernel source.
auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
// For statically linked executables, this is the virtual address of the
// program header tables if they appear in the executable image
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
//This is the address of the elf "interpreter", It should be set
//to 0 for regular executables. It should be something else
//(not sure what) for dynamic libraries.
auxv.push_back(auxv_t(M5_AT_BASE, 0));
//XXX Figure out what this should be.
auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
//The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
//Whether to enable "secure mode" in the executable
auxv.push_back(auxv_t(M5_AT_SECURE, 0));
//The address of 16 "random" bytes.
auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
//The name of the program
auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
//The platform string
auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
}
//Figure out how big the initial stack needs to be
// A sentry NULL void pointer at the top of the stack.
int sentry_size = intSize;
//This is the name of the file which is present on the initial stack
//It's purpose is to let the user space linker examine the original file.
int file_name_size = filename.size() + 1;
const int numRandomBytes = 16;
int aux_data_size = numRandomBytes;
string platform = "x86_64";
aux_data_size += platform.size() + 1;
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
//The info_block needs to be padded so it's size is a multiple of the
//alignment mask. Also, it appears that there needs to be at least some
//padding, so if the size is already a multiple, we need to increase it
//anyway.
int base_info_block_size =
sentry_size + file_name_size + env_data_size + arg_data_size;
int info_block_size = roundUp(base_info_block_size, align);
int info_block_padding = info_block_size - base_info_block_size;
//Each auxilliary vector is two 8 byte words
int aux_array_size = intSize * 2 * (auxv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int argv_array_size = intSize * (argv.size() + 1);
int argc_size = intSize;
//Figure out the size of the contents of the actual initial frame
int frame_size =
aux_array_size +
envp_array_size +
argv_array_size +
argc_size;
//There needs to be padding after the auxiliary vector data so that the
//very bottom of the stack is aligned properly.
int partial_size = frame_size + aux_data_size;
int aligned_partial_size = roundUp(partial_size, align);
int aux_padding = aligned_partial_size - partial_size;
int space_needed =
info_block_size +
aux_data_size +
aux_padding +
frame_size;
stack_min = stack_base - space_needed;
stack_min = roundDown(stack_min, align);
stack_size = stack_base - stack_min;
// map memory
pTable->allocate(roundDown(stack_min, pageSize),
roundUp(stack_size, pageSize));
// map out initial stack contents
IntType sentry_base = stack_base - sentry_size;
IntType file_name_base = sentry_base - file_name_size;
IntType env_data_base = file_name_base - env_data_size;
IntType arg_data_base = env_data_base - arg_data_size;
IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
IntType envp_array_base = auxv_array_base - envp_array_size;
IntType argv_array_base = envp_array_base - argv_array_size;
IntType argc_base = argv_array_base - argc_size;
DPRINTF(Stack, "The addresses of items on the initial stack:\n");
DPRINTF(Stack, "0x%x - file name\n", file_name_base);
DPRINTF(Stack, "0x%x - env data\n", env_data_base);
DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
DPRINTF(Stack, "0x%x - argc \n", argc_base);
DPRINTF(Stack, "0x%x - stack min\n", stack_min);
// write contents to stack
// figure out argc
IntType argc = argv.size();
IntType guestArgc = X86ISA::htog(argc);
//Write out the sentry void *
IntType sentry_NULL = 0;
initVirtMem->writeBlob(sentry_base,
(uint8_t*)&sentry_NULL, sentry_size);
//Write the file name
initVirtMem->writeString(file_name_base, filename.c_str());
//Fix up the aux vectors which point to data
assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
auxv[auxv.size() - 3].a_val = aux_data_base;
assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
auxv[auxv.size() - 2].a_val = argv_array_base;
assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
//Copy the aux stuff
for(int x = 0; x < auxv.size(); x++)
{
initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].a_type), intSize);
initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].a_val), intSize);
}
//Write out the terminating zeroed auxilliary vector
const uint64_t zero = 0;
initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
(uint8_t*)&zero, 2 * intSize);
initVirtMem->writeString(aux_data_base, platform.c_str());
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
ThreadContext *tc = system->getThreadContext(contextIds[0]);
//Set the stack pointer register
tc->setIntReg(StackPointerReg, stack_min);
// There doesn't need to be any segment base added in since we're dealing
// with the flat segmentation model.
ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors. This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-31 08:07:20 +01:00
tc->pcState(objFile->entryPoint());
//Align the "stack_min" to a page boundary.
stack_min = roundDown(stack_min, pageSize);
// num_processes++;
}
void
X86_64LiveProcess::argsInit(int intSize, int pageSize)
{
std::vector<AuxVector<uint64_t> > extraAuxvs;
extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
vsyscallPage.base));
X86LiveProcess::argsInit<uint64_t>(pageSize, extraAuxvs);
}
void
I386LiveProcess::argsInit(int intSize, int pageSize)
{
std::vector<AuxVector<uint32_t> > extraAuxvs;
//Tell the binary where the vsyscall part of the vsyscall page is.
extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
vsyscallPage.base + vsyscallPage.vsyscallOffset));
extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
vsyscallPage.base));
X86LiveProcess::argsInit<uint32_t>(pageSize, extraAuxvs);
}
void
X86LiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn return_value)
{
tc->setIntReg(INTREG_RAX, return_value.value());
}
X86ISA::IntReg
X86_64LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < NumArgumentRegs);
return tc->readIntReg(ArgumentReg[i++]);
}
void
X86_64LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
{
assert(i < NumArgumentRegs);
return tc->setIntReg(ArgumentReg[i], val);
}
X86ISA::IntReg
I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < NumArgumentRegs32);
return tc->readIntReg(ArgumentReg32[i++]);
}
X86ISA::IntReg
I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i, int width)
{
assert(width == 32 || width == 64);
assert(i < NumArgumentRegs);
uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
if (width == 64)
retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
return retVal;
}
void
I386LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
{
assert(i < NumArgumentRegs);
return tc->setIntReg(ArgumentReg[i], val);
}