gem5/src/dev/i8254xGBe_defs.hh

656 lines
25 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
/* @file
* Register and structure descriptions for Intel's 8254x line of gigabit ethernet controllers.
*/
#include "base/bitfield.hh"
namespace iGbReg {
const uint32_t REG_CTRL = 0x00000; //*
const uint32_t REG_STATUS = 0x00008; //*
const uint32_t REG_EECD = 0x00010; //*
const uint32_t REG_EERD = 0x00014; //*
const uint32_t REG_CTRL_EXT = 0x00018; //*-
const uint32_t REG_MDIC = 0x00020; //*
const uint32_t REG_FCAL = 0x00028; //*
const uint32_t REG_FCAH = 0x0002C; //*
const uint32_t REG_FCT = 0x00030; //*
const uint32_t REG_VET = 0x00038; //*
const uint32_t REG_PBA = 0x01000; //*
const uint32_t REG_ICR = 0x000C0; //*
const uint32_t REG_ITR = 0x000C4; //*
const uint32_t REG_ICS = 0x000C8; //*
const uint32_t REG_IMS = 0x000D0; //*
const uint32_t REG_IMC = 0x000D8; //*
const uint32_t REG_IAM = 0x000E0; //*
const uint32_t REG_RCTL = 0x00100; //*
const uint32_t REG_FCTTV = 0x00170; //*
const uint32_t REG_TIPG = 0x00410; //*
const uint32_t REG_AIFS = 0x00458; //*
const uint32_t REG_LEDCTL = 0x00e00; //*
const uint32_t REG_FCRTL = 0x02160; //*
const uint32_t REG_FCRTH = 0x02168; //*
const uint32_t REG_RDBAL = 0x02800; //*-
const uint32_t REG_RDBAH = 0x02804; //*-
const uint32_t REG_RDLEN = 0x02808; //*-
const uint32_t REG_RDH = 0x02810; //*-
const uint32_t REG_RDT = 0x02818; //*-
const uint32_t REG_RDTR = 0x02820; //*-
const uint32_t REG_RXDCTL = 0x02828; //*
const uint32_t REG_RADV = 0x0282C; //*-
const uint32_t REG_RSRPD = 0x02C00;
const uint32_t REG_TCTL = 0x00400; //*
const uint32_t REG_TDBAL = 0x03800; //*
const uint32_t REG_TDBAH = 0x03804; //*
const uint32_t REG_TDLEN = 0x03808; //*
const uint32_t REG_TDH = 0x03810; //*
const uint32_t REG_TDT = 0x03818; //*
const uint32_t REG_TIDV = 0x03820; //*
const uint32_t REG_TXDMAC = 0x03000;
const uint32_t REG_TXDCTL = 0x03828; //*
const uint32_t REG_TADV = 0x0382C; //*
const uint32_t REG_TSPMT = 0x03830;
const uint32_t REG_CRCERRS = 0x04000;
const uint32_t REG_RXCSUM = 0x05000; //*-
const uint32_t REG_MTA = 0x05200;
const uint32_t REG_RAL = 0x05400;
const uint32_t REG_RAH = 0x05404;
const uint32_t REG_VFTA = 0x05600;
const uint32_t REG_WUC = 0x05800;//*
const uint32_t REG_MANC = 0x05820;//*
const uint8_t EEPROM_READ_OPCODE_SPI = 0x03;
const uint8_t EEPROM_RDSR_OPCODE_SPI = 0x05;
const uint8_t EEPROM_SIZE = 64;
const uint16_t EEPROM_CSUM = 0xBABA;
const uint8_t VLAN_FILTER_TABLE_SIZE = 128;
const uint8_t RCV_ADDRESS_TABLE_SIZE = 16;
const uint8_t MULTICAST_TABLE_SIZE = 128;
const uint32_t STATS_REGS_SIZE = 0x124;
const uint8_t PHY_PSTATUS = 0x1;
const uint8_t PHY_PID = 0x2;
const uint8_t PHY_EPID = 0x3;
const uint8_t PHY_GSTATUS = 10;
const uint8_t PHY_EPSTATUS = 15;
const uint8_t PHY_AGC = 18;
struct RxDesc {
Addr buf;
uint16_t len;
uint16_t csum;
union {
uint8_t status;
struct { // these may be in the worng order
uint8_t dd:1; // descriptor done (hw is done when 1)
uint8_t eop:1; // end of packet
uint8_t xism:1; // ignore checksum
uint8_t vp:1; // packet is vlan packet
uint8_t rsv:1; // reserved
uint8_t tcpcs:1; // TCP checksum done
uint8_t ipcs:1; // IP checksum done
uint8_t pif:1; // passed in-exact filter
} st;
};
union {
uint8_t errors;
struct {
uint8_t ce:1; // crc error or alignment error
uint8_t se:1; // symbol error
uint8_t seq:1; // sequence error
uint8_t rsv:1; // reserved
uint8_t cxe:1; // carrier extension error
uint8_t tcpe:1; // tcp checksum error
uint8_t ipe:1; // ip checksum error
uint8_t rxe:1; // PX data error
} er;
};
union {
uint16_t special;
struct {
uint16_t vlan:12; //vlan id
uint16_t cfi:1; // canocial form id
uint16_t pri:3; // user priority
} sp;
};
};
union TxDesc {
uint8_t data[16];
struct {
Addr buf;
uint16_t len;
uint8_t cso;
union {
uint8_t command;
struct {
uint8_t eop:1; // end of packet
uint8_t ifcs:1; // insert crc
uint8_t ic:1; // insert checksum
uint8_t rs:1; // report status
uint8_t rps:1; // report packet sent
uint8_t dext:1; // extension
uint8_t vle:1; // vlan enable
uint8_t ide:1; // interrupt delay enable
} cmd;
};
union {
uint8_t status:4;
struct {
uint8_t dd:1; // descriptor done
uint8_t ec:1; // excess collisions
uint8_t lc:1; // late collision
uint8_t tu:1; // transmit underrun
} st;
};
uint8_t reserved:4;
uint8_t css;
union {
uint16_t special;
struct {
uint16_t vlan:12; //vlan id
uint16_t cfi:1; // canocial form id
uint16_t pri:3; // user priority
} sp;
};
} legacy;
// Type 0000 descriptor
struct {
uint8_t ipcss;
uint8_t ipcso;
uint16_t ipcse;
uint8_t tucss;
uint8_t tucso;
uint16_t tucse;
uint32_t paylen:20;
uint8_t dtype:4;
union {
uint8_t tucommand;
struct {
uint8_t tcp:1; // tcp/udp
uint8_t ip:1; // ip ipv4/ipv6
uint8_t tse:1; // tcp segment enbale
uint8_t rs:1; // report status
uint8_t rsv0:1; // reserved
uint8_t dext:1; // descriptor extension
uint8_t rsv1:1; // reserved
uint8_t ide:1; // interrupt delay enable
} tucmd;
};
union {
uint8_t status:4;
struct {
uint8_t dd:1;
uint8_t rsvd:3;
} sta;
};
uint8_t reserved:4;
uint8_t hdrlen;
uint16_t mss;
} t0;
// Type 0001 descriptor
struct {
Addr buf;
uint32_t dtalen:20;
uint8_t dtype:4;
union {
uint8_t dcommand;
struct {
uint8_t eop:1; // end of packet
uint8_t ifcs:1; // insert crc
uint8_t tse:1; // segmentation enable
uint8_t rs:1; // report status
uint8_t rps:1; // report packet sent
uint8_t dext:1; // extension
uint8_t vle:1; // vlan enable
uint8_t ide:1; // interrupt delay enable
} dcmd;
};
union {
uint8_t status:4;
struct {
uint8_t dd:1; // descriptor done
uint8_t ec:1; // excess collisions
uint8_t lc:1; // late collision
uint8_t tu:1; // transmit underrun
} sta;
};
union {
uint8_t pktopts;
struct {
uint8_t ixsm:1; // insert ip checksum
uint8_t txsm:1; // insert tcp checksum
};
};
union {
uint16_t special;
struct {
uint16_t vlan:12; //vlan id
uint16_t cfi:1; // canocial form id
uint16_t pri:3; // user priority
} sp;
};
} t1;
// Junk to test descriptor type!
struct {
uint64_t junk;
uint32_t junk1:20;
uint8_t dtype;
uint8_t junk2:5;
uint8_t dext:1;
uint8_t junk3:2;
uint8_t junk4:4;
uint32_t junk5;
} type;
};
#define ADD_FIELD32(NAME, OFFSET, BITS) \
inline uint32_t NAME() { return bits(_data, OFFSET+BITS-1, OFFSET); } \
inline void NAME(uint32_t d) { replaceBits(_data, OFFSET+BITS-1, OFFSET,d); }
#define ADD_FIELD64(NAME, OFFSET, BITS) \
inline uint64_t NAME() { return bits(_data, OFFSET+BITS-1, OFFSET); } \
inline void NAME(uint64_t d) { replaceBits(_data, OFFSET+BITS-1, OFFSET,d); }
struct Regs {
template<class T>
struct Reg {
T _data;
T operator()() { return _data; }
const Reg<T> &operator=(T d) { _data = d; return *this;}
bool operator==(T d) { return d == _data; }
void operator()(T d) { _data = d; }
};
struct CTRL : public Reg<uint32_t> { // 0x0000 CTRL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(fd,0,1); // full duplex
ADD_FIELD32(bem,1,1); // big endian mode
ADD_FIELD32(pcipr,2,1); // PCI priority
ADD_FIELD32(lrst,3,1); // link reset
ADD_FIELD32(tme,4,1); // test mode enable
ADD_FIELD32(asde,5,1); // Auto-speed detection
ADD_FIELD32(slu,6,1); // Set link up
ADD_FIELD32(ilos,7,1); // invert los-of-signal
ADD_FIELD32(speed,8,2); // speed selection bits
ADD_FIELD32(be32,10,1); // big endian mode 32
ADD_FIELD32(frcspd,11,1); // force speed
ADD_FIELD32(frcdpx,12,1); // force duplex
ADD_FIELD32(duden,13,1); // dock/undock enable
ADD_FIELD32(dudpol,14,1); // dock/undock polarity
ADD_FIELD32(fphyrst,15,1); // force phy reset
ADD_FIELD32(extlen,16,1); // external link status enable
ADD_FIELD32(rsvd,17,1); // reserved
ADD_FIELD32(sdp0d,18,1); // software controlled pin data
ADD_FIELD32(sdp1d,19,1); // software controlled pin data
ADD_FIELD32(sdp2d,20,1); // software controlled pin data
ADD_FIELD32(sdp3d,21,1); // software controlled pin data
ADD_FIELD32(sdp0i,22,1); // software controlled pin dir
ADD_FIELD32(sdp1i,23,1); // software controlled pin dir
ADD_FIELD32(sdp2i,24,1); // software controlled pin dir
ADD_FIELD32(sdp3i,25,1); // software controlled pin dir
ADD_FIELD32(rst,26,1); // reset
ADD_FIELD32(rfce,27,1); // receive flow control enable
ADD_FIELD32(tfce,28,1); // transmit flow control enable
ADD_FIELD32(rte,29,1); // routing tag enable
ADD_FIELD32(vme,30,1); // vlan enable
ADD_FIELD32(phyrst,31,1); // phy reset
};
CTRL ctrl;
struct STATUS : public Reg<uint32_t> { // 0x0008 STATUS Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(fd,0,1); // full duplex
ADD_FIELD32(lu,1,1); // link up
ADD_FIELD32(func,2,2); // function id
ADD_FIELD32(txoff,4,1); // transmission paused
ADD_FIELD32(tbimode,5,1); // tbi mode
ADD_FIELD32(speed,6,2); // link speed
ADD_FIELD32(asdv,8,2); // auto speed detection value
ADD_FIELD32(mtxckok,10,1); // mtx clock running ok
ADD_FIELD32(pci66,11,1); // In 66Mhz pci slot
ADD_FIELD32(bus64,12,1); // in 64 bit slot
ADD_FIELD32(pcix,13,1); // Pci mode
ADD_FIELD32(pcixspd,14,2); // pci x speed
};
STATUS sts;
struct EECD : public Reg<uint32_t> { // 0x0010 EECD Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(sk,0,1); // clack input to the eeprom
ADD_FIELD32(cs,1,1); // chip select to eeprom
ADD_FIELD32(din,2,1); // data input to eeprom
ADD_FIELD32(dout,3,1); // data output bit
ADD_FIELD32(fwe,4,2); // flash write enable
ADD_FIELD32(ee_req,6,1); // request eeprom access
ADD_FIELD32(ee_gnt,7,1); // grant eeprom access
ADD_FIELD32(ee_pres,8,1); // eeprom present
ADD_FIELD32(ee_size,9,1); // eeprom size
ADD_FIELD32(ee_sz1,10,1); // eeprom size
ADD_FIELD32(rsvd,11,2); // reserved
ADD_FIELD32(ee_type,13,1); // type of eeprom
} ;
EECD eecd;
struct EERD : public Reg<uint32_t> { // 0x0014 EERD Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(start,0,1); // start read
ADD_FIELD32(done,4,1); // done read
ADD_FIELD32(addr,8,8); // address
ADD_FIELD32(data,16,16); // data
};
EERD eerd;
struct CTRL_EXT : public Reg<uint32_t> { // 0x0018 CTRL_EXT Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(gpi_en,0,4); // enable interrupts from gpio
ADD_FIELD32(phyint,5,1); // reads the phy internal int status
ADD_FIELD32(sdp2_data,6,1); // data from gpio sdp
ADD_FIELD32(spd3_data,7,1); // data frmo gpio sdp
ADD_FIELD32(spd2_iodir,10,1); // direction of sdp2
ADD_FIELD32(spd3_iodir,11,1); // direction of sdp2
ADD_FIELD32(asdchk,12,1); // initiate auto-speed-detection
ADD_FIELD32(eerst,13,1); // reset the eeprom
ADD_FIELD32(spd_byps,15,1); // bypass speed select
ADD_FIELD32(ro_dis,17,1); // disable relaxed memory ordering
ADD_FIELD32(vreg,21,1); // power down the voltage regulator
ADD_FIELD32(link_mode,22,2); // interface to talk to the link
ADD_FIELD32(iame, 27,1); // interrupt acknowledge auto-mask ??
ADD_FIELD32(drv_loaded, 28,1);// driver is loaded and incharge of device
ADD_FIELD32(timer_clr, 29,1); // clear interrupt timers after IMS clear ??
};
CTRL_EXT ctrl_ext;
struct MDIC : public Reg<uint32_t> { // 0x0020 MDIC Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(data,0,16); // data
ADD_FIELD32(regadd,16,5); // register address
ADD_FIELD32(phyadd,21,5); // phy addresses
ADD_FIELD32(op,26,2); // opcode
ADD_FIELD32(r,28,1); // ready
ADD_FIELD32(i,29,1); // interrupt
ADD_FIELD32(e,30,1); // error
};
MDIC mdic;
struct ICR : public Reg<uint32_t> { // 0x00C0 ICR Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(txdw,0,1) // tx descr witten back
ADD_FIELD32(txqe,1,1) // tx queue empty
ADD_FIELD32(lsc,2,1) // link status change
ADD_FIELD32(rxseq,3,1) // rcv sequence error
ADD_FIELD32(rxdmt0,4,1) // rcv descriptor min thresh
ADD_FIELD32(rsvd1,5,1) // reserved
ADD_FIELD32(rxo,6,1) // receive overrunn
ADD_FIELD32(rxt0,7,1) // receiver timer interrupt
ADD_FIELD32(mdac,9,1) // mdi/o access complete
ADD_FIELD32(rxcfg,10,1) // recv /c/ ordered sets
ADD_FIELD32(phyint,12,1) // phy interrupt
ADD_FIELD32(gpi1,13,1) // gpi int 1
ADD_FIELD32(gpi2,14,1) // gpi int 2
ADD_FIELD32(txdlow,15,1) // transmit desc low thresh
ADD_FIELD32(srpd,16,1) // small receive packet detected
ADD_FIELD32(ack,17,1); // receive ack frame
ADD_FIELD32(int_assert, 31,0); // interrupt caused a system interrupt
};
ICR icr;
uint32_t imr; // register that contains the current interrupt mask
struct ITR : public Reg<uint32_t> { // 0x00C4 ITR Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(interval, 0,16); // minimum inter-interrutp inteval
// specified in 256ns interrupts
};
ITR itr;
// When CTRL_EXT.IAME and the ICR.INT_ASSERT is 1 an ICR read or write
// causes the IAM register contents to be written into the IMC
// automatically clearing all interrupts that have a bit in the IAM set
uint32_t iam;
struct RCTL : public Reg<uint32_t> { // 0x0100 RCTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rst,0,1); // Reset
ADD_FIELD32(en,1,1); // Enable
ADD_FIELD32(sbp,2,1); // Store bad packets
ADD_FIELD32(upe,3,1); // Unicast Promiscuous enabled
ADD_FIELD32(mpe,4,1); // Multicast promiscuous enabled
ADD_FIELD32(lpe,5,1); // long packet reception enabled
ADD_FIELD32(lbm,6,2); //
ADD_FIELD32(rdmts,8,2); //
ADD_FIELD32(rsvd,10,2); //
ADD_FIELD32(mo,12,2); //
ADD_FIELD32(mdr,14,1); //
ADD_FIELD32(bam,15,1); //
ADD_FIELD32(bsize,16,2); //
ADD_FIELD32(vfe,18,1); //
ADD_FIELD32(cfien,19,1); //
ADD_FIELD32(cfi,20,1); //
ADD_FIELD32(rsvd2,21,1); //
ADD_FIELD32(dpf,22,1); // discard pause frames
ADD_FIELD32(pmcf,23,1); // pass mac control frames
ADD_FIELD32(bsex,25,1); // buffer size extension
ADD_FIELD32(secrc,26,1); // strip ethernet crc from incoming packet
};
RCTL rctl;
struct FCTTV : public Reg<uint32_t> { // 0x0170 FCTTV
using Reg<uint32_t>::operator=;
ADD_FIELD32(ttv,0,16); // Transmit Timer Value
};
FCTTV fcttv;
struct TCTL : public Reg<uint32_t> { // 0x0400 TCTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rst,0,1); // Reset
ADD_FIELD32(en,1,1); // Enable
ADD_FIELD32(bce,2,1); // busy check enable
ADD_FIELD32(psp,3,1); // pad short packets
ADD_FIELD32(ct,4,8); // collision threshold
ADD_FIELD32(cold,12,10); // collision distance
ADD_FIELD32(swxoff,22,1); // software xoff transmission
ADD_FIELD32(pbe,23,1); // packet burst enable
ADD_FIELD32(rtlc,24,1); // retransmit late collisions
ADD_FIELD32(nrtu,25,1); // on underrun no TX
ADD_FIELD32(mulr,26,1); // multiple request
};
TCTL tctl;
struct PBA : public Reg<uint32_t> { // 0x1000 PBA Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rxa,0,16);
ADD_FIELD32(txa,16,16);
};
PBA pba;
struct FCRTL : public Reg<uint32_t> { // 0x2160 FCRTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rtl,3,28); // make this bigger than the spec so we can have
// a larger buffer
ADD_FIELD32(xone, 31,1);
};
FCRTL fcrtl;
struct FCRTH : public Reg<uint32_t> { // 0x2168 FCRTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rth,3,13); // make this bigger than the spec so we can have
//a larger buffer
ADD_FIELD32(xfce, 31,1);
};
FCRTH fcrth;
struct RDBA : public Reg<uint64_t> { // 0x2800 RDBA Register
using Reg<uint64_t>::operator=;
ADD_FIELD64(rdbal,4,28); // base address of rx descriptor ring
ADD_FIELD64(rdbah,32,32); // base address of rx descriptor ring
};
RDBA rdba;
struct RDLEN : public Reg<uint32_t> { // 0x2808 RDLEN Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(len,7,13); // number of bytes in the descriptor buffer
};
RDLEN rdlen;
struct RDH : public Reg<uint32_t> { // 0x2810 RDH Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rdh,0,16); // head of the descriptor ring
};
RDH rdh;
struct RDT : public Reg<uint32_t> { // 0x2818 RDT Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rdt,0,16); // tail of the descriptor ring
};
RDT rdt;
struct RDTR : public Reg<uint32_t> { // 0x2820 RDTR Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(delay,0,16); // receive delay timer
ADD_FIELD32(fpd, 31,); // flush partial descriptor block ??
};
RDTR rdtr;
struct RADV : public Reg<uint32_t> { // 0x282C RADV Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,16); // absolute interrupt delay
};
RADV radv;
struct RSRPD : public Reg<uint32_t> { // 0x2C00 RSRPD Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,12); // size to interrutp on small packets
};
RSRPD rsrpd;
struct TDBA : public Reg<uint64_t> { // 0x3800 TDBAL Register
using Reg<uint64_t>::operator=;
ADD_FIELD64(tdbal,4,28); // base address of transmit descriptor ring
ADD_FIELD64(tdbah,32,32); // base address of transmit descriptor ring
};
TDBA tdba;
struct TDLEN : public Reg<uint32_t> { // 0x3808 TDLEN Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(len,7,13); // number of bytes in the descriptor buffer
};
TDLEN tdlen;
struct TDH : public Reg<uint32_t> { // 0x3810 TDH Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(tdh,0,16); // head of the descriptor ring
};
TDH tdh;
struct TDT : public Reg<uint32_t> { // 0x3818 TDT Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(tdt,0,16); // tail of the descriptor ring
};
TDT tdt;
struct TIDV : public Reg<uint32_t> { // 0x3820 TIDV Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,16); // interrupt delay
};
TIDV tidv;
struct TXDCTL : public Reg<uint32_t> { // 0x3828 TXDCTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(pthresh, 0,6); // if number of descriptors control has is
// below this number, a prefetch is considered
ADD_FIELD32(hthresh,8,8); // number of valid descriptors is host memory
// before a prefetch is considered
ADD_FIELD32(wthresh,16,6); // number of descriptors to keep until
// writeback is considered
ADD_FIELD32(gran, 24,1); // granulatiry of above values (0 = cacheline,
// 1 == desscriptor)
ADD_FIELD32(lwthresh,25,7); // xmit descriptor low thresh, interrupt
// below this level
};
TXDCTL txdctl;
struct TADV : public Reg<uint32_t> { // 0x382C TADV Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,16); // absolute interrupt delay
};
TADV tadv;
struct RXCSUM : public Reg<uint32_t> { // 0x5000 RXCSUM Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(pcss,0,8);
ADD_FIELD32(ipofld,8,1);
ADD_FIELD32(tuofld,9,1);
};
RXCSUM rxcsum;
struct MANC : public Reg<uint32_t> { // 0x5820 MANC Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(smbus,0,1); // SMBus enabled #####
ADD_FIELD32(asf,1,1); // ASF enabled #####
ADD_FIELD32(ronforce,2,1); // reset of force
ADD_FIELD32(rsvd,3,5); // reserved
ADD_FIELD32(rmcp1,8,1); // rcmp1 filtering
ADD_FIELD32(rmcp2,9,1); // rcmp2 filtering
ADD_FIELD32(ipv4,10,1); // enable ipv4
ADD_FIELD32(ipv6,11,1); // enable ipv6
ADD_FIELD32(snap,12,1); // accept snap
ADD_FIELD32(arp,13,1); // filter arp #####
ADD_FIELD32(neighbor,14,1); // neighbor discovery
ADD_FIELD32(arp_resp,15,1); // arp response
ADD_FIELD32(tcorst,16,1); // tco reset happened
ADD_FIELD32(rcvtco,17,1); // receive tco enabled ######
ADD_FIELD32(blkphyrst,18,1);// block phy resets ########
ADD_FIELD32(rcvall,19,1); // receive all
ADD_FIELD32(macaddrfltr,20,1); // mac address filtering ######
ADD_FIELD32(mng2host,21,1); // mng2 host packets #######
ADD_FIELD32(ipaddrfltr,22,1); // ip address filtering
ADD_FIELD32(xsumfilter,23,1); // checksum filtering
ADD_FIELD32(brfilter,24,1); // broadcast filtering
ADD_FIELD32(smbreq,25,1); // smb request
ADD_FIELD32(smbgnt,26,1); // smb grant
ADD_FIELD32(smbclkin,27,1); // smbclkin
ADD_FIELD32(smbdatain,28,1); // smbdatain
ADD_FIELD32(smbdataout,29,1); // smb data out
ADD_FIELD32(smbclkout,30,1); // smb clock out
};
MANC manc;
};
}; // iGbReg namespace