gem5/src/cpu/simple/timing.cc

559 lines
14 KiB
C++
Raw Normal View History

Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/utility.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/timing.hh"
#include "mem/packet_impl.hh"
#include "sim/builder.hh"
using namespace std;
using namespace TheISA;
void
TimingSimpleCPU::init()
{
//Create Memory Ports (conect them up)
Port *mem_dport = mem->getPort("");
dcachePort.setPeer(mem_dport);
mem_dport->setPeer(&dcachePort);
Port *mem_iport = mem->getPort("");
icachePort.setPeer(mem_iport);
mem_iport->setPeer(&icachePort);
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
}
Tick
TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
{
panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
return curTick;
}
void
TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
{
panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
}
void
TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
{
if (status == RangeChange)
return;
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
}
TimingSimpleCPU::TimingSimpleCPU(Params *p)
: BaseSimpleCPU(p), icachePort(this), dcachePort(this)
{
_status = Idle;
ifetch_pkt = dcache_pkt = NULL;
}
TimingSimpleCPU::~TimingSimpleCPU()
{
}
void
TimingSimpleCPU::serialize(ostream &os)
{
BaseSimpleCPU::serialize(os);
SERIALIZE_ENUM(_status);
}
void
TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseSimpleCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
}
void
TimingSimpleCPU::switchOut(Sampler *s)
{
sampler = s;
if (status() == Running) {
_status = SwitchedOut;
}
sampler->signalSwitched();
}
void
TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
break;
}
}
}
void
TimingSimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Idle);
notIdleFraction++;
_status = Running;
// kick things off by initiating the fetch of the next instruction
Event *e =
new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
e->schedule(curTick + cycles(delay));
}
void
TimingSimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(cpuXC);
panic("TimingSimpleCPU::suspendContext not implemented");
assert(_status == Running);
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
Request *data_read_req = new Request(true);
data_read_req->setVaddr(addr);
data_read_req->setSize(sizeof(T));
data_read_req->setFlags(flags);
data_read_req->setTime(curTick);
if (traceData) {
traceData->setAddr(data_read_req->getVaddr());
}
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(data_read_req);
// Now do the access.
if (fault == NoFault) {
Packet *data_read_pkt =
new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
data_read_pkt->dataDynamic<T>(new T);
if (!dcachePort.sendTiming(data_read_pkt)) {
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
_status = DcacheRetry;
dcache_pkt = data_read_pkt;
} else {
_status = DcacheWaitResponse;
dcache_pkt = NULL;
}
}
// This will need a new way to tell if it has a dcache attached.
if (data_read_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
Request *data_write_req = new Request(true);
data_write_req->setVaddr(addr);
data_write_req->setTime(curTick);
data_write_req->setSize(sizeof(T));
data_write_req->setFlags(flags);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
// Now do the access.
if (fault == NoFault) {
Packet *data_write_pkt =
new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
data_write_pkt->allocate();
data_write_pkt->set(data);
if (!dcachePort.sendTiming(data_write_pkt)) {
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
_status = DcacheRetry;
dcache_pkt = data_write_pkt;
} else {
_status = DcacheWaitResponse;
dcache_pkt = NULL;
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (data_write_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
TimingSimpleCPU::fetch()
{
checkForInterrupts();
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
Request *ifetch_req = new Request(true);
ifetch_req->setSize(sizeof(MachInst));
ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
ifetch_pkt->dataStatic(&inst);
Fault fault = setupFetchPacket(ifetch_pkt);
if (fault == NoFault) {
if (!icachePort.sendTiming(ifetch_pkt)) {
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
// Need to wait for retry
_status = IcacheRetry;
} else {
// Need to wait for cache to respond
_status = IcacheWaitResponse;
// ownership of packet transferred to memory system
ifetch_pkt = NULL;
}
} else {
panic("TimingSimpleCPU fetch fault handling not implemented");
}
}
void
TimingSimpleCPU::completeInst(Fault fault)
{
postExecute();
if (traceData) {
traceData->finalize();
}
advancePC(fault);
if (_status == Running) {
// kick off fetch of next instruction... callback from icache
// response will cause that instruction to be executed,
// keeping the CPU running.
fetch();
}
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
}
void
TimingSimpleCPU::completeIfetch()
{
// received a response from the icache: execute the received
// instruction
assert(_status == IcacheWaitResponse);
_status = Running;
preExecute();
if (curStaticInst->isMemRef()) {
// load or store: just send to dcache
Fault fault = curStaticInst->initiateAcc(this, traceData);
assert(fault == NoFault);
assert(_status == DcacheWaitResponse);
// instruction will complete in dcache response callback
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
} else {
// non-memory instruction: execute completely now
Fault fault = curStaticInst->execute(this, traceData);
completeInst(fault);
}
}
bool
TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
{
cpu->completeIfetch();
return true;
}
Packet *
TimingSimpleCPU::IcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->ifetch_pkt != NULL);
assert(cpu->_status == IcacheRetry);
cpu->_status = IcacheWaitResponse;
Packet *tmp = cpu->ifetch_pkt;
cpu->ifetch_pkt = NULL;
return tmp;
}
void
TimingSimpleCPU::completeDataAccess(Packet *pkt)
{
// received a response from the dcache: complete the load or store
// instruction
assert(pkt->result == Packet::Success);
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
assert(_status == DcacheWaitResponse);
_status = Running;
Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
completeInst(fault);
}
bool
TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
{
cpu->completeDataAccess(pkt);
Split SimpleCPU into two different models, AtomicSimpleCPU and TimingSimpleCPU, which use atomic and timing memory accesses respectively. Common code is factored into the BaseSimpleCPU class. AtomicSimpleCPU includes an option (simulate_stalls) to add delays based on the estimated latency reported by the atomic accesses. Plain old "SimpleCPU" is gone; I have not updated all the config files (just test/test.py). Also fixes to get timing accesses working in new memory model and to get split-phase memory instruction definitions working with new memory model as well. arch/alpha/isa/main.isa: Need to include packet_impl.h for functions that use Packet objects. arch/alpha/isa/mem.isa: Change completeAcc() methods to take Packet object pointers. Also split out StoreCond template for completeAcc(), since that's the only one that needs write_result and we get an unused variable warning if we always have it in there. build/SConstruct: Update list of recognized CPU model names. configs/test/test.py: Change SimpleCPU to AtomicSimpleCPU. cpu/SConscript: Define sources for new CPU models. Add split memory access methods to CPU model signatures. cpu/cpu_models.py: cpu/static_inst.hh: Define new CPU models. cpu/simple/base.cc: cpu/simple/base.hh: Factor out pieces specific to Atomic or Timing models. mem/bus.cc: Bus needs to be able to route timing packets based on explicit dest so responses can get back to requester. Set dest to Packet::Broadcast to indicate that dest should be derived from address. Also set packet src field based on port from which packet is sent. mem/bus.hh: Set packet src field based on port from which packet is sent. mem/packet.hh: Define Broadcast destination address to indicate that packet should be routed based on address. mem/physical.cc: Set packet dest on response so packet is routed back to requester properly. mem/port.cc: Flag blob packets as Broadcast. python/m5/objects/PhysicalMemory.py: Change default latency to be 1 cycle. --HG-- rename : cpu/simple/cpu.cc => cpu/simple/base.cc rename : cpu/simple/cpu.hh => cpu/simple/base.hh extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
2006-05-16 23:36:50 +02:00
return true;
}
Packet *
TimingSimpleCPU::DcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->dcache_pkt != NULL);
assert(cpu->_status == DcacheRetry);
cpu->_status = DcacheWaitResponse;
Packet *tmp = cpu->dcache_pkt;
cpu->dcache_pkt = NULL;
return tmp;
}
////////////////////////////////////////////////////////////////////////
//
// TimingSimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<MemObject *> mem;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
Param<bool> simulate_stalls;
END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
INIT_PARAM(mem, "memory"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace"),
INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
CREATE_SIM_OBJECT(TimingSimpleCPU)
{
TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->mem = mem;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)