gem5/src/cpu/minor/cpu.hh

177 lines
6 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andrew Bardsley
*/
/**
* @file
*
* Top level definition of the Minor in-order CPU model
*/
#ifndef __CPU_MINOR_CPU_HH__
#define __CPU_MINOR_CPU_HH__
#include "cpu/minor/activity.hh"
#include "cpu/minor/stats.hh"
#include "cpu/base.hh"
#include "cpu/simple_thread.hh"
#include "params/MinorCPU.hh"
namespace Minor
{
/** Forward declared to break the cyclic inclusion dependencies between
* pipeline and cpu */
class Pipeline;
/** Minor will use the SimpleThread state for now */
typedef SimpleThread MinorThread;
};
/**
* MinorCPU is an in-order CPU model with four fixed pipeline stages:
*
* Fetch1 - fetches lines from memory
* Fetch2 - decomposes lines into macro-op instructions
* Decode - decomposes macro-ops into micro-ops
* Execute - executes those micro-ops
*
* This pipeline is carried in the MinorCPU::pipeline object.
* The exec_context interface is not carried by MinorCPU but by
* Minor::ExecContext objects
* created by Minor::Execute.
*/
class MinorCPU : public BaseCPU
{
protected:
/** pipeline is a container for the clockable pipeline stage objects.
* Elements of pipeline call TheISA to implement the model. */
Minor::Pipeline *pipeline;
public:
/** Activity recording for pipeline. This belongs to Pipeline but
* stages will access it through the CPU as the MinorCPU object
* actually mediates idling behaviour */
Minor::MinorActivityRecorder *activityRecorder;
/** These are thread state-representing objects for this CPU. If
* you need a ThreadContext for *any* reason, use
* threads[threadId]->getTC() */
std::vector<Minor::MinorThread *> threads;
public:
/** Provide a non-protected base class for Minor's Ports as derived
* classes are created by Fetch1 and Execute */
class MinorCPUPort : public MasterPort
{
public:
/** The enclosing cpu */
MinorCPU &cpu;
public:
MinorCPUPort(const std::string& name_, MinorCPU &cpu_)
: MasterPort(name_, &cpu_), cpu(cpu_)
{ }
protected:
/** Snooping a coherence request, do nothing. */
virtual void recvTimingSnoopReq(PacketPtr pkt) { }
};
protected:
/** Return a reference to the data port. */
MasterPort &getDataPort();
/** Return a reference to the instruction port. */
MasterPort &getInstPort();
public:
MinorCPU(MinorCPUParams *params);
~MinorCPU();
public:
/** Starting, waking and initialisation */
void init();
void startup();
void wakeup();
Addr dbg_vtophys(Addr addr);
/** Processor-specific statistics */
Minor::MinorStats stats;
/** Stats interface from SimObject (by way of BaseCPU) */
void regStats();
/** Simple inst count interface from BaseCPU */
Counter totalInsts() const;
Counter totalOps() const;
sim: Refactor the serialization base class Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-07-07 10:51:03 +02:00
void serializeThread(CheckpointOut &cp,
ThreadID tid) const M5_ATTR_OVERRIDE;
void unserializeThread(CheckpointIn &cp, ThreadID tid) M5_ATTR_OVERRIDE;
/** Serialize pipeline data */
sim: Refactor the serialization base class Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-07-07 10:51:03 +02:00
void serialize(CheckpointOut &cp) const;
void unserialize(CheckpointIn &cp);
/** Drain interface */
DrainState drain() M5_ATTR_OVERRIDE;
void drainResume() M5_ATTR_OVERRIDE;
/** Signal from Pipeline that MinorCPU should signal that a drain
* is complete and set its drainState */
void signalDrainDone();
void memWriteback();
/** Switching interface from BaseCPU */
void switchOut();
void takeOverFrom(BaseCPU *old_cpu);
/** Thread activation interface from BaseCPU. */
void activateContext(ThreadID thread_id);
void suspendContext(ThreadID thread_id);
/** Interface for stages to signal that they have become active after
* a callback or eventq event where the pipeline itself may have
* already been idled. The stage argument should be from the
* enumeration Pipeline::StageId */
void wakeupOnEvent(unsigned int stage_id);
};
#endif /* __CPU_MINOR_CPU_HH__ */