560 lines
14 KiB
C++
560 lines
14 KiB
C++
|
/*
|
||
|
* Copyright (c) 2002-2005 The Regents of The University of Michigan
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are
|
||
|
* met: redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer;
|
||
|
* redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution;
|
||
|
* neither the name of the copyright holders nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived from
|
||
|
* this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include "arch/utility.hh"
|
||
|
#include "cpu/exetrace.hh"
|
||
|
#include "cpu/simple/timing.hh"
|
||
|
#include "mem/packet_impl.hh"
|
||
|
#include "sim/builder.hh"
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace TheISA;
|
||
|
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::init()
|
||
|
{
|
||
|
//Create Memory Ports (conect them up)
|
||
|
Port *mem_dport = mem->getPort("");
|
||
|
dcachePort.setPeer(mem_dport);
|
||
|
mem_dport->setPeer(&dcachePort);
|
||
|
|
||
|
Port *mem_iport = mem->getPort("");
|
||
|
icachePort.setPeer(mem_iport);
|
||
|
mem_iport->setPeer(&icachePort);
|
||
|
|
||
|
BaseCPU::init();
|
||
|
#if FULL_SYSTEM
|
||
|
for (int i = 0; i < execContexts.size(); ++i) {
|
||
|
ExecContext *xc = execContexts[i];
|
||
|
|
||
|
// initialize CPU, including PC
|
||
|
TheISA::initCPU(xc, xc->readCpuId());
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
Tick
|
||
|
TimingSimpleCPU::CpuPort::recvAtomic(Packet &pkt)
|
||
|
{
|
||
|
panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
|
||
|
return curTick;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::CpuPort::recvFunctional(Packet &pkt)
|
||
|
{
|
||
|
panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
|
||
|
{
|
||
|
panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
|
||
|
}
|
||
|
|
||
|
TimingSimpleCPU::TimingSimpleCPU(Params *p)
|
||
|
: BaseSimpleCPU(p), icachePort(this), dcachePort(this)
|
||
|
{
|
||
|
_status = Idle;
|
||
|
ifetch_pkt = dcache_pkt = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
TimingSimpleCPU::~TimingSimpleCPU()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::serialize(ostream &os)
|
||
|
{
|
||
|
BaseSimpleCPU::serialize(os);
|
||
|
SERIALIZE_ENUM(_status);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::unserialize(Checkpoint *cp, const string §ion)
|
||
|
{
|
||
|
BaseSimpleCPU::unserialize(cp, section);
|
||
|
UNSERIALIZE_ENUM(_status);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::switchOut(Sampler *s)
|
||
|
{
|
||
|
sampler = s;
|
||
|
if (status() == Running) {
|
||
|
_status = SwitchedOut;
|
||
|
}
|
||
|
sampler->signalSwitched();
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
|
||
|
{
|
||
|
BaseCPU::takeOverFrom(oldCPU);
|
||
|
|
||
|
// if any of this CPU's ExecContexts are active, mark the CPU as
|
||
|
// running and schedule its tick event.
|
||
|
for (int i = 0; i < execContexts.size(); ++i) {
|
||
|
ExecContext *xc = execContexts[i];
|
||
|
if (xc->status() == ExecContext::Active && _status != Running) {
|
||
|
_status = Running;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::activateContext(int thread_num, int delay)
|
||
|
{
|
||
|
assert(thread_num == 0);
|
||
|
assert(cpuXC);
|
||
|
|
||
|
assert(_status == Idle);
|
||
|
|
||
|
notIdleFraction++;
|
||
|
_status = Running;
|
||
|
// kick things off by initiating the fetch of the next instruction
|
||
|
Event *e =
|
||
|
new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
|
||
|
e->schedule(curTick + cycles(delay));
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::suspendContext(int thread_num)
|
||
|
{
|
||
|
assert(thread_num == 0);
|
||
|
assert(cpuXC);
|
||
|
|
||
|
panic("TimingSimpleCPU::suspendContext not implemented");
|
||
|
|
||
|
assert(_status == Running);
|
||
|
|
||
|
notIdleFraction--;
|
||
|
_status = Idle;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
|
||
|
{
|
||
|
Request *data_read_req = new Request(true);
|
||
|
|
||
|
data_read_req->setVaddr(addr);
|
||
|
data_read_req->setSize(sizeof(T));
|
||
|
data_read_req->setFlags(flags);
|
||
|
data_read_req->setTime(curTick);
|
||
|
|
||
|
if (traceData) {
|
||
|
traceData->setAddr(data_read_req->getVaddr());
|
||
|
}
|
||
|
|
||
|
// translate to physical address
|
||
|
Fault fault = cpuXC->translateDataReadReq(data_read_req);
|
||
|
|
||
|
// Now do the access.
|
||
|
if (fault == NoFault) {
|
||
|
Packet *data_read_pkt = new Packet;
|
||
|
data_read_pkt->cmd = Read;
|
||
|
data_read_pkt->req = data_read_req;
|
||
|
data_read_pkt->dataDynamic<T>(new T);
|
||
|
data_read_pkt->addr = data_read_req->getPaddr();
|
||
|
data_read_pkt->size = sizeof(T);
|
||
|
data_read_pkt->dest = Packet::Broadcast;
|
||
|
|
||
|
if (!dcachePort.sendTiming(*data_read_pkt)) {
|
||
|
_status = DcacheRetry;
|
||
|
dcache_pkt = data_read_pkt;
|
||
|
} else {
|
||
|
_status = DcacheWaitResponse;
|
||
|
dcache_pkt = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This will need a new way to tell if it has a dcache attached.
|
||
|
if (data_read_req->getFlags() & UNCACHEABLE)
|
||
|
recordEvent("Uncached Read");
|
||
|
|
||
|
return fault;
|
||
|
}
|
||
|
|
||
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
||
|
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
|
||
|
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
|
||
|
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
|
||
|
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
|
||
|
|
||
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
||
|
|
||
|
template<>
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
|
||
|
{
|
||
|
return read(addr, *(uint64_t*)&data, flags);
|
||
|
}
|
||
|
|
||
|
template<>
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
|
||
|
{
|
||
|
return read(addr, *(uint32_t*)&data, flags);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<>
|
||
|
Fault
|
||
|
TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
|
||
|
{
|
||
|
return read(addr, (uint32_t&)data, flags);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
|
||
|
{
|
||
|
Request *data_write_req = new Request(true);
|
||
|
data_write_req->setVaddr(addr);
|
||
|
data_write_req->setTime(curTick);
|
||
|
data_write_req->setSize(sizeof(T));
|
||
|
data_write_req->setFlags(flags);
|
||
|
|
||
|
// translate to physical address
|
||
|
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
|
||
|
// Now do the access.
|
||
|
if (fault == NoFault) {
|
||
|
Packet *data_write_pkt = new Packet;
|
||
|
data_write_pkt->cmd = Write;
|
||
|
data_write_pkt->req = data_write_req;
|
||
|
data_write_pkt->allocate();
|
||
|
data_write_pkt->size = sizeof(T);
|
||
|
data_write_pkt->set(data);
|
||
|
data_write_pkt->addr = data_write_req->getPaddr();
|
||
|
data_write_pkt->dest = Packet::Broadcast;
|
||
|
|
||
|
if (!dcachePort.sendTiming(*data_write_pkt)) {
|
||
|
_status = DcacheRetry;
|
||
|
dcache_pkt = data_write_pkt;
|
||
|
} else {
|
||
|
_status = DcacheWaitResponse;
|
||
|
dcache_pkt = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This will need a new way to tell if it's hooked up to a cache or not.
|
||
|
if (data_write_req->getFlags() & UNCACHEABLE)
|
||
|
recordEvent("Uncached Write");
|
||
|
|
||
|
// If the write needs to have a fault on the access, consider calling
|
||
|
// changeStatus() and changing it to "bad addr write" or something.
|
||
|
return fault;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(uint64_t data, Addr addr,
|
||
|
unsigned flags, uint64_t *res);
|
||
|
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(uint32_t data, Addr addr,
|
||
|
unsigned flags, uint64_t *res);
|
||
|
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(uint16_t data, Addr addr,
|
||
|
unsigned flags, uint64_t *res);
|
||
|
|
||
|
template
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(uint8_t data, Addr addr,
|
||
|
unsigned flags, uint64_t *res);
|
||
|
|
||
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
||
|
|
||
|
template<>
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
|
||
|
{
|
||
|
return write(*(uint64_t*)&data, addr, flags, res);
|
||
|
}
|
||
|
|
||
|
template<>
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
|
||
|
{
|
||
|
return write(*(uint32_t*)&data, addr, flags, res);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<>
|
||
|
Fault
|
||
|
TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
|
||
|
{
|
||
|
return write((uint32_t)data, addr, flags, res);
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::fetch()
|
||
|
{
|
||
|
Request *ifetch_req = new Request(true);
|
||
|
ifetch_req->setSize(sizeof(MachInst));
|
||
|
|
||
|
ifetch_pkt = new Packet;
|
||
|
ifetch_pkt->cmd = Read;
|
||
|
ifetch_pkt->dataStatic(&inst);
|
||
|
ifetch_pkt->req = ifetch_req;
|
||
|
ifetch_pkt->size = sizeof(MachInst);
|
||
|
ifetch_pkt->dest = Packet::Broadcast;
|
||
|
|
||
|
Fault fault = setupFetchPacket(ifetch_pkt);
|
||
|
if (fault == NoFault) {
|
||
|
if (!icachePort.sendTiming(*ifetch_pkt)) {
|
||
|
// Need to wait for retry
|
||
|
_status = IcacheRetry;
|
||
|
} else {
|
||
|
// Need to wait for cache to respond
|
||
|
_status = IcacheWaitResponse;
|
||
|
// ownership of packet transferred to memory system
|
||
|
ifetch_pkt = NULL;
|
||
|
}
|
||
|
} else {
|
||
|
panic("TimingSimpleCPU fetch fault handling not implemented");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::completeInst(Fault fault)
|
||
|
{
|
||
|
postExecute();
|
||
|
|
||
|
if (traceData) {
|
||
|
traceData->finalize();
|
||
|
}
|
||
|
|
||
|
advancePC(fault);
|
||
|
|
||
|
fetch();
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::completeIfetch()
|
||
|
{
|
||
|
// received a response from the icache: execute the received
|
||
|
// instruction
|
||
|
assert(_status == IcacheWaitResponse);
|
||
|
_status = Running;
|
||
|
preExecute();
|
||
|
if (curStaticInst->isMemRef()) {
|
||
|
// load or store: just send to dcache
|
||
|
Fault fault = curStaticInst->initiateAcc(this, traceData);
|
||
|
assert(fault == NoFault);
|
||
|
assert(_status == DcacheWaitResponse);
|
||
|
} else {
|
||
|
// non-memory instruction: execute completely now
|
||
|
Fault fault = curStaticInst->execute(this, traceData);
|
||
|
completeInst(fault);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool
|
||
|
TimingSimpleCPU::IcachePort::recvTiming(Packet &pkt)
|
||
|
{
|
||
|
cpu->completeIfetch();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Packet *
|
||
|
TimingSimpleCPU::IcachePort::recvRetry()
|
||
|
{
|
||
|
// we shouldn't get a retry unless we have a packet that we're
|
||
|
// waiting to transmit
|
||
|
assert(cpu->ifetch_pkt != NULL);
|
||
|
assert(cpu->_status == IcacheRetry);
|
||
|
cpu->_status = IcacheWaitResponse;
|
||
|
Packet *tmp = cpu->ifetch_pkt;
|
||
|
cpu->ifetch_pkt = NULL;
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TimingSimpleCPU::completeDataAccess(Packet *pkt)
|
||
|
{
|
||
|
// received a response from the dcache: complete the load or store
|
||
|
// instruction
|
||
|
assert(pkt->result == Success);
|
||
|
assert(_status == DcacheWaitResponse);
|
||
|
_status = Running;
|
||
|
|
||
|
Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
|
||
|
|
||
|
completeInst(fault);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
bool
|
||
|
TimingSimpleCPU::DcachePort::recvTiming(Packet &pkt)
|
||
|
{
|
||
|
cpu->completeDataAccess(&pkt);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Packet *
|
||
|
TimingSimpleCPU::DcachePort::recvRetry()
|
||
|
{
|
||
|
// we shouldn't get a retry unless we have a packet that we're
|
||
|
// waiting to transmit
|
||
|
assert(cpu->dcache_pkt != NULL);
|
||
|
assert(cpu->_status == DcacheRetry);
|
||
|
cpu->_status = DcacheWaitResponse;
|
||
|
Packet *tmp = cpu->dcache_pkt;
|
||
|
cpu->dcache_pkt = NULL;
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// TimingSimpleCPU Simulation Object
|
||
|
//
|
||
|
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
|
||
|
|
||
|
Param<Counter> max_insts_any_thread;
|
||
|
Param<Counter> max_insts_all_threads;
|
||
|
Param<Counter> max_loads_any_thread;
|
||
|
Param<Counter> max_loads_all_threads;
|
||
|
SimObjectParam<MemObject *> mem;
|
||
|
|
||
|
#if FULL_SYSTEM
|
||
|
SimObjectParam<AlphaITB *> itb;
|
||
|
SimObjectParam<AlphaDTB *> dtb;
|
||
|
SimObjectParam<System *> system;
|
||
|
Param<int> cpu_id;
|
||
|
Param<Tick> profile;
|
||
|
#else
|
||
|
SimObjectParam<Process *> workload;
|
||
|
#endif // FULL_SYSTEM
|
||
|
|
||
|
Param<int> clock;
|
||
|
|
||
|
Param<bool> defer_registration;
|
||
|
Param<int> width;
|
||
|
Param<bool> function_trace;
|
||
|
Param<Tick> function_trace_start;
|
||
|
Param<bool> simulate_stalls;
|
||
|
|
||
|
END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
|
||
|
|
||
|
BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
|
||
|
|
||
|
INIT_PARAM(max_insts_any_thread,
|
||
|
"terminate when any thread reaches this inst count"),
|
||
|
INIT_PARAM(max_insts_all_threads,
|
||
|
"terminate when all threads have reached this inst count"),
|
||
|
INIT_PARAM(max_loads_any_thread,
|
||
|
"terminate when any thread reaches this load count"),
|
||
|
INIT_PARAM(max_loads_all_threads,
|
||
|
"terminate when all threads have reached this load count"),
|
||
|
INIT_PARAM(mem, "memory"),
|
||
|
|
||
|
#if FULL_SYSTEM
|
||
|
INIT_PARAM(itb, "Instruction TLB"),
|
||
|
INIT_PARAM(dtb, "Data TLB"),
|
||
|
INIT_PARAM(system, "system object"),
|
||
|
INIT_PARAM(cpu_id, "processor ID"),
|
||
|
INIT_PARAM(profile, ""),
|
||
|
#else
|
||
|
INIT_PARAM(workload, "processes to run"),
|
||
|
#endif // FULL_SYSTEM
|
||
|
|
||
|
INIT_PARAM(clock, "clock speed"),
|
||
|
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
|
||
|
INIT_PARAM(width, "cpu width"),
|
||
|
INIT_PARAM(function_trace, "Enable function trace"),
|
||
|
INIT_PARAM(function_trace_start, "Cycle to start function trace"),
|
||
|
INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
|
||
|
|
||
|
END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
|
||
|
|
||
|
|
||
|
CREATE_SIM_OBJECT(TimingSimpleCPU)
|
||
|
{
|
||
|
TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
|
||
|
params->name = getInstanceName();
|
||
|
params->numberOfThreads = 1;
|
||
|
params->max_insts_any_thread = max_insts_any_thread;
|
||
|
params->max_insts_all_threads = max_insts_all_threads;
|
||
|
params->max_loads_any_thread = max_loads_any_thread;
|
||
|
params->max_loads_all_threads = max_loads_all_threads;
|
||
|
params->deferRegistration = defer_registration;
|
||
|
params->clock = clock;
|
||
|
params->functionTrace = function_trace;
|
||
|
params->functionTraceStart = function_trace_start;
|
||
|
params->mem = mem;
|
||
|
|
||
|
#if FULL_SYSTEM
|
||
|
params->itb = itb;
|
||
|
params->dtb = dtb;
|
||
|
params->system = system;
|
||
|
params->cpu_id = cpu_id;
|
||
|
params->profile = profile;
|
||
|
#else
|
||
|
params->process = workload;
|
||
|
#endif
|
||
|
|
||
|
TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
|
||
|
return cpu;
|
||
|
}
|
||
|
|
||
|
REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
|
||
|
|