gem5/src/mem/coherent_bus.cc

535 lines
19 KiB
C++
Raw Normal View History

Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
/*
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Andreas Hansson
* William Wang
*/
/**
* @file
* Definition of a bus object.
*/
#include "base/misc.hh"
#include "base/trace.hh"
#include "debug/BusAddrRanges.hh"
#include "debug/CoherentBus.hh"
#include "mem/coherent_bus.hh"
#include "sim/system.hh"
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
CoherentBus::CoherentBus(const CoherentBusParams *p)
: BaseBus(p), reqLayer(*this, ".reqLayer"),
respLayer(*this, ".respLayer"),
snoopRespLayer(*this, ".snoopRespLayer"),
system(p->system)
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
{
// create the ports based on the size of the master and slave
// vector ports, and the presence of the default port, the ports
// are enumerated starting from zero
for (int i = 0; i < p->port_master_connection_count; ++i) {
std::string portName = csprintf("%s.master[%d]", name(), i);
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
MasterPort* bp = new CoherentBusMasterPort(portName, *this, i);
masterPorts.push_back(bp);
}
// see if we have a default slave device connected and if so add
// our corresponding master port
if (p->port_default_connection_count) {
defaultPortID = masterPorts.size();
std::string portName = name() + ".default";
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
MasterPort* bp = new CoherentBusMasterPort(portName, *this,
defaultPortID);
masterPorts.push_back(bp);
}
// create the slave ports, once again starting at zero
for (int i = 0; i < p->port_slave_connection_count; ++i) {
std::string portName = csprintf("%s.slave[%d]", name(), i);
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
SlavePort* bp = new CoherentBusSlavePort(portName, *this, i);
slavePorts.push_back(bp);
}
clearPortCache();
}
void
CoherentBus::init()
{
// the base class is responsible for determining the block size
BaseBus::init();
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// iterate over our slave ports and determine which of our
// neighbouring master ports are snooping and add them as snoopers
for (SlavePortConstIter p = slavePorts.begin(); p != slavePorts.end();
++p) {
// check if the connected master port is snooping
if ((*p)->isSnooping()) {
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
DPRINTF(BusAddrRanges, "Adding snooping master %s\n",
(*p)->getMasterPort().name());
snoopPorts.push_back(*p);
}
}
if (snoopPorts.empty())
warn("CoherentBus %s has no snooping ports attached!\n", name());
}
bool
CoherentBus::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
{
// determine the source port based on the id
SlavePort *src_port = slavePorts[slave_port_id];
// remember if the packet is an express snoop
bool is_express_snoop = pkt->isExpressSnoop();
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// test if the bus should be considered occupied for the current
// port, and exclude express snoops from the check
if (!is_express_snoop && !reqLayer.tryTiming(src_port)) {
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
DPRINTF(CoherentBus, "recvTimingReq: src %s %s 0x%x BUSY\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
return false;
}
DPRINTF(CoherentBus, "recvTimingReq: src %s %s expr %d 0x%x\n",
src_port->name(), pkt->cmdString(), is_express_snoop,
pkt->getAddr());
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// set the source port for routing of the response
pkt->setSrc(slave_port_id);
calcPacketTiming(pkt);
Tick packetFinishTime = pkt->busLastWordDelay + curTick();
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// uncacheable requests need never be snooped
if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// the packet is a memory-mapped request and should be
// broadcasted to our snoopers but the source
forwardTiming(pkt, slave_port_id);
}
// remember if we add an outstanding req so we can undo it if
// necessary, if the packet needs a response, we should add it
// as outstanding and express snoops never fail so there is
// not need to worry about them
bool add_outstanding = !is_express_snoop && pkt->needsResponse();
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// keep track that we have an outstanding request packet
// matching this request, this is used by the coherency
// mechanism in determining what to do with snoop responses
// (in recvTimingSnoop)
if (add_outstanding) {
// we should never have an exsiting request outstanding
assert(outstandingReq.find(pkt->req) == outstandingReq.end());
outstandingReq.insert(pkt->req);
}
// since it is a normal request, determine the destination
// based on the address and attempt to send the packet
bool success = masterPorts[findPort(pkt->getAddr())]->sendTimingReq(pkt);
// if this is an express snoop, we are done at this point
if (is_express_snoop) {
assert(success);
} else {
// for normal requests, check if successful
if (!success) {
// inhibited packets should never be forced to retry
assert(!pkt->memInhibitAsserted());
// if it was added as outstanding and the send failed, then
// erase it again
if (add_outstanding)
outstandingReq.erase(pkt->req);
DPRINTF(CoherentBus, "recvTimingReq: src %s %s 0x%x RETRY\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
// update the bus state and schedule an idle event
reqLayer.failedTiming(src_port, clockEdge(Cycles(headerCycles)));
} else {
// update the bus state and schedule an idle event
reqLayer.succeededTiming(packetFinishTime);
}
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
}
return success;
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
}
bool
CoherentBus::recvTimingResp(PacketPtr pkt, PortID master_port_id)
{
// determine the source port based on the id
MasterPort *src_port = masterPorts[master_port_id];
// test if the bus should be considered occupied for the current
// port
if (!respLayer.tryTiming(src_port)) {
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
DPRINTF(CoherentBus, "recvTimingResp: src %s %s 0x%x BUSY\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
return false;
}
DPRINTF(CoherentBus, "recvTimingResp: src %s %s 0x%x\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
calcPacketTiming(pkt);
Tick packetFinishTime = pkt->busLastWordDelay + curTick();
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// the packet is a normal response to a request that we should
// have seen passing through the bus
assert(outstandingReq.find(pkt->req) != outstandingReq.end());
// remove it as outstanding
outstandingReq.erase(pkt->req);
// send the packet to the destination through one of our slave
// ports, as determined by the destination field
bool success M5_VAR_USED = slavePorts[pkt->getDest()]->sendTimingResp(pkt);
// currently it is illegal to block responses... can lead to
// deadlock
assert(success);
respLayer.succeededTiming(packetFinishTime);
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
return true;
}
void
CoherentBus::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
{
DPRINTF(CoherentBus, "recvTimingSnoopReq: src %s %s 0x%x\n",
masterPorts[master_port_id]->name(), pkt->cmdString(),
pkt->getAddr());
// we should only see express snoops from caches
assert(pkt->isExpressSnoop());
// set the source port for routing of the response
pkt->setSrc(master_port_id);
// forward to all snoopers
forwardTiming(pkt, InvalidPortID);
// a snoop request came from a connected slave device (one of
// our master ports), and if it is not coming from the slave
// device responsible for the address range something is
// wrong, hence there is nothing further to do as the packet
// would be going back to where it came from
assert(master_port_id == findPort(pkt->getAddr()));
}
bool
CoherentBus::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
{
// determine the source port based on the id
SlavePort* src_port = slavePorts[slave_port_id];
// test if the bus should be considered occupied for the current
// port
if (!snoopRespLayer.tryTiming(src_port)) {
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
DPRINTF(CoherentBus, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
return false;
}
DPRINTF(CoherentBus, "recvTimingSnoop: src %s %s 0x%x\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
// get the destination from the packet
PortID dest = pkt->getDest();
// responses are never express snoops
assert(!pkt->isExpressSnoop());
calcPacketTiming(pkt);
Tick packetFinishTime = pkt->busLastWordDelay + curTick();
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// determine if the response is from a snoop request we
// created as the result of a normal request (in which case it
// should be in the outstandingReq), or if we merely forwarded
// someone else's snoop request
if (outstandingReq.find(pkt->req) == outstandingReq.end()) {
// this is a snoop response to a snoop request we
// forwarded, e.g. coming from the L1 and going to the L2
// this should be forwarded as a snoop response
bool success M5_VAR_USED = masterPorts[dest]->sendTimingSnoopResp(pkt);
assert(success);
} else {
// we got a snoop response on one of our slave ports,
// i.e. from a coherent master connected to the bus, and
// since we created the snoop request as part of
// recvTiming, this should now be a normal response again
outstandingReq.erase(pkt->req);
// this is a snoop response from a coherent master, with a
// destination field set on its way through the bus as
// request, hence it should never go back to where the
// snoop response came from, but instead to where the
// original request came from
assert(slave_port_id != dest);
// as a normal response, it should go back to a master
// through one of our slave ports
bool success M5_VAR_USED = slavePorts[dest]->sendTimingResp(pkt);
// currently it is illegal to block responses... can lead
// to deadlock
assert(success);
}
snoopRespLayer.succeededTiming(packetFinishTime);
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
return true;
}
void
CoherentBus::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id)
{
// snoops should only happen if the system isn't bypassing caches
assert(!system->bypassCaches());
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) {
SlavePort *p = *s;
// we could have gotten this request from a snooping master
// (corresponding to our own slave port that is also in
// snoopPorts) and should not send it back to where it came
// from
if (exclude_slave_port_id == InvalidPortID ||
p->getId() != exclude_slave_port_id) {
// cache is not allowed to refuse snoop
p->sendTimingSnoopReq(pkt);
}
}
}
void
CoherentBus::recvRetry()
{
// responses and snoop responses never block on forwarding them,
// so the retry will always be coming from a port to which we
// tried to forward a request
reqLayer.recvRetry();
}
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
Tick
CoherentBus::recvAtomic(PacketPtr pkt, PortID slave_port_id)
{
DPRINTF(CoherentBus, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
slavePorts[slave_port_id]->name(), pkt->getAddr(),
pkt->cmdString());
MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
Tick snoop_response_latency = 0;
// uncacheable requests need never be snooped
if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// forward to all snoopers but the source
std::pair<MemCmd, Tick> snoop_result =
forwardAtomic(pkt, slave_port_id);
snoop_response_cmd = snoop_result.first;
snoop_response_latency = snoop_result.second;
}
// even if we had a snoop response, we must continue and also
// perform the actual request at the destination
PortID dest_id = findPort(pkt->getAddr());
// forward the request to the appropriate destination
Tick response_latency = masterPorts[dest_id]->sendAtomic(pkt);
// if we got a response from a snooper, restore it here
if (snoop_response_cmd != MemCmd::InvalidCmd) {
// no one else should have responded
assert(!pkt->isResponse());
pkt->cmd = snoop_response_cmd;
response_latency = snoop_response_latency;
}
// @todo: Not setting first-word time
pkt->busLastWordDelay = response_latency;
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
return response_latency;
}
Tick
CoherentBus::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
{
DPRINTF(CoherentBus, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
masterPorts[master_port_id]->name(), pkt->getAddr(),
pkt->cmdString());
// forward to all snoopers
std::pair<MemCmd, Tick> snoop_result =
forwardAtomic(pkt, InvalidPortID);
MemCmd snoop_response_cmd = snoop_result.first;
Tick snoop_response_latency = snoop_result.second;
if (snoop_response_cmd != MemCmd::InvalidCmd)
pkt->cmd = snoop_response_cmd;
// @todo: Not setting first-word time
pkt->busLastWordDelay = snoop_response_latency;
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
return snoop_response_latency;
}
std::pair<MemCmd, Tick>
CoherentBus::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id)
{
// the packet may be changed on snoops, record the original
// command to enable us to restore it between snoops so that
// additional snoops can take place properly
MemCmd orig_cmd = pkt->cmd;
MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
Tick snoop_response_latency = 0;
// snoops should only happen if the system isn't bypassing caches
assert(!system->bypassCaches());
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) {
SlavePort *p = *s;
// we could have gotten this request from a snooping master
// (corresponding to our own slave port that is also in
// snoopPorts) and should not send it back to where it came
// from
if (exclude_slave_port_id == InvalidPortID ||
p->getId() != exclude_slave_port_id) {
Tick latency = p->sendAtomicSnoop(pkt);
// in contrast to a functional access, we have to keep on
// going as all snoopers must be updated even if we get a
// response
if (pkt->isResponse()) {
// response from snoop agent
assert(pkt->cmd != orig_cmd);
assert(pkt->memInhibitAsserted());
// should only happen once
assert(snoop_response_cmd == MemCmd::InvalidCmd);
// save response state
snoop_response_cmd = pkt->cmd;
snoop_response_latency = latency;
// restore original packet state for remaining snoopers
pkt->cmd = orig_cmd;
}
}
}
// the packet is restored as part of the loop and any potential
// snoop response is part of the returned pair
return std::make_pair(snoop_response_cmd, snoop_response_latency);
}
void
CoherentBus::recvFunctional(PacketPtr pkt, PortID slave_port_id)
{
if (!pkt->isPrint()) {
// don't do DPRINTFs on PrintReq as it clutters up the output
DPRINTF(CoherentBus,
"recvFunctional: packet src %s addr 0x%x cmd %s\n",
slavePorts[slave_port_id]->name(), pkt->getAddr(),
pkt->cmdString());
}
// uncacheable requests need never be snooped
if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
// forward to all snoopers but the source
forwardFunctional(pkt, slave_port_id);
}
// there is no need to continue if the snooping has found what we
// were looking for and the packet is already a response
if (!pkt->isResponse()) {
PortID dest_id = findPort(pkt->getAddr());
masterPorts[dest_id]->sendFunctional(pkt);
}
}
void
CoherentBus::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
{
if (!pkt->isPrint()) {
// don't do DPRINTFs on PrintReq as it clutters up the output
DPRINTF(CoherentBus,
"recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
masterPorts[master_port_id]->name(), pkt->getAddr(),
pkt->cmdString());
}
// forward to all snoopers
forwardFunctional(pkt, InvalidPortID);
}
void
CoherentBus::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
{
// snoops should only happen if the system isn't bypassing caches
assert(!system->bypassCaches());
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) {
SlavePort *p = *s;
// we could have gotten this request from a snooping master
// (corresponding to our own slave port that is also in
// snoopPorts) and should not send it back to where it came
// from
if (exclude_slave_port_id == InvalidPortID ||
p->getId() != exclude_slave_port_id)
p->sendFunctionalSnoop(pkt);
// if we get a response we are done
if (pkt->isResponse()) {
break;
}
}
}
unsigned int
CoherentBus::drain(DrainManager *dm)
{
// sum up the individual layers
return reqLayer.drain(dm) + respLayer.drain(dm) + snoopRespLayer.drain(dm);
}
Bus: Split the bus into a non-coherent and coherent bus This patch introduces a class hierarchy of buses, a non-coherent one, and a coherent one, splitting the existing bus functionality. By doing so it also enables further specialisation of the two types of buses. A non-coherent bus connects a number of non-snooping masters and slaves, and routes the request and response packets based on the address. The request packets issued by the master connected to a non-coherent bus could still snoop in caches attached to a coherent bus, as is the case with the I/O bus and memory bus in most system configurations. No snoops will, however, reach any master on the non-coherent bus itself. The non-coherent bus can be used as a template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses, and is typically used for the I/O buses. A coherent bus connects a number of (potentially) snooping masters and slaves, and routes the request and response packets based on the address, and also forwards all requests to the snoopers and deals with the snoop responses. The coherent bus can be used as a template for modelling QPI, HyperTransport, ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as the main system interconnect. The configuration scripts are updated to use a NoncoherentBus for all peripheral and I/O buses. A bit of minor tidying up has also been done. --HG-- rename : src/mem/bus.cc => src/mem/coherent_bus.cc rename : src/mem/bus.hh => src/mem/coherent_bus.hh rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
CoherentBus *
CoherentBusParams::create()
{
return new CoherentBus(this);
}