gem5/src/mem/ruby/system/MemoryVector.hh

238 lines
7.1 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2009 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
2010-03-23 02:43:53 +01:00
#ifndef __MEM_RUBY_SYSTEM_MEMORYVECTOR_HH__
#define __MEM_RUBY_SYSTEM_MEMORYVECTOR_HH__
#include "base/trace.hh"
#include "debug/RubyCacheTrace.hh"
#include "mem/ruby/common/Address.hh"
class DirectoryMemory;
/**
* MemoryVector holds memory data (DRAM only)
*/
2010-03-23 02:43:53 +01:00
class MemoryVector
{
public:
MemoryVector();
MemoryVector(uint64 size);
2010-03-23 02:43:53 +01:00
~MemoryVector();
friend class DirectoryMemory;
void resize(uint64 size); // destructive
void write(const Address & paddr, uint8_t *data, int len);
uint8_t *read(const Address & paddr, uint8_t *data, int len);
uint32_t collatePages(uint8_t *&raw_data);
void populatePages(uint8_t *raw_data);
2010-03-23 02:43:53 +01:00
private:
uint8_t *getBlockPtr(const PhysAddress & addr);
uint64 m_size;
uint8_t **m_pages;
uint32_t m_num_pages;
const uint32_t m_page_offset_mask;
static const uint32_t PAGE_SIZE = 4096;
};
inline
MemoryVector::MemoryVector()
2010-03-23 02:43:53 +01:00
: m_page_offset_mask(4095)
{
2010-03-23 02:43:53 +01:00
m_size = 0;
m_num_pages = 0;
m_pages = NULL;
}
inline
MemoryVector::MemoryVector(uint64 size)
2010-03-23 02:43:53 +01:00
: m_page_offset_mask(4095)
{
resize(size);
}
inline
MemoryVector::~MemoryVector()
{
2010-03-23 02:43:53 +01:00
for (int i = 0; i < m_num_pages; i++) {
if (m_pages[i] != 0) {
delete [] m_pages[i];
}
}
2010-03-23 02:43:53 +01:00
delete [] m_pages;
}
2010-03-23 02:43:53 +01:00
inline void
MemoryVector::resize(uint64 size)
{
2010-03-23 02:43:53 +01:00
if (m_pages != NULL){
for (int i = 0; i < m_num_pages; i++) {
if (m_pages[i] != 0) {
delete [] m_pages[i];
}
}
delete [] m_pages;
}
2010-03-23 02:43:53 +01:00
m_size = size;
assert(size%PAGE_SIZE == 0);
2010-03-23 02:43:53 +01:00
m_num_pages = size >> 12;
m_pages = new uint8_t*[m_num_pages];
memset(m_pages, 0, m_num_pages * sizeof(uint8_t*));
}
2010-03-23 02:43:53 +01:00
inline void
MemoryVector::write(const Address & paddr, uint8_t *data, int len)
{
2010-03-23 02:43:53 +01:00
assert(paddr.getAddress() + len <= m_size);
uint32_t page_num = paddr.getAddress() >> 12;
2010-03-23 02:43:53 +01:00
if (m_pages[page_num] == 0) {
bool all_zeros = true;
for (int i = 0; i < len;i++) {
if (data[i] != 0) {
all_zeros = false;
break;
}
}
if (all_zeros)
return;
m_pages[page_num] = new uint8_t[PAGE_SIZE];
memset(m_pages[page_num], 0, PAGE_SIZE);
uint32_t offset = paddr.getAddress() & m_page_offset_mask;
2010-03-23 02:43:53 +01:00
memcpy(&m_pages[page_num][offset], data, len);
} else {
memcpy(&m_pages[page_num][paddr.getAddress()&m_page_offset_mask],
data, len);
}
}
inline uint8_t*
MemoryVector::read(const Address & paddr, uint8_t *data, int len)
{
2010-03-23 02:43:53 +01:00
assert(paddr.getAddress() + len <= m_size);
uint32_t page_num = paddr.getAddress() >> 12;
2010-03-23 02:43:53 +01:00
if (m_pages[page_num] == 0) {
memset(data, 0, len);
} else {
memcpy(data, &m_pages[page_num][paddr.getAddress()&m_page_offset_mask],
len);
}
return data;
}
inline uint8_t*
2010-03-23 02:43:53 +01:00
MemoryVector::getBlockPtr(const PhysAddress & paddr)
{
uint32_t page_num = paddr.getAddress() >> 12;
2010-03-23 02:43:53 +01:00
if (m_pages[page_num] == 0) {
m_pages[page_num] = new uint8_t[PAGE_SIZE];
memset(m_pages[page_num], 0, PAGE_SIZE);
2010-03-23 02:43:53 +01:00
}
return &m_pages[page_num][paddr.getAddress()&m_page_offset_mask];
}
/*!
* Function for collating all the pages of the physical memory together.
* In case a pointer for a page is NULL, this page needs only a single byte
* to represent that the pointer is NULL. Otherwise, it needs 1 + PAGE_SIZE
* bytes. The first represents that the page pointer is not NULL, and rest of
* the bytes represent the data on the page.
*/
inline uint32_t
MemoryVector::collatePages(uint8_t *&raw_data)
{
uint32_t num_zero_pages = 0;
uint32_t data_size = 0;
for (uint32_t i = 0;i < m_num_pages; ++i)
{
if (m_pages[i] == 0) num_zero_pages++;
}
raw_data = new uint8_t[sizeof(uint32_t) /* number of pages*/ +
m_num_pages /* whether the page is all zeros */ +
PAGE_SIZE * (m_num_pages - num_zero_pages)];
/* Write the number of pages to be stored. */
memcpy(raw_data, &m_num_pages, sizeof(uint32_t));
data_size = sizeof(uint32_t);
DPRINTF(RubyCacheTrace, "collating %d pages\n", m_num_pages);
for (uint32_t i = 0;i < m_num_pages; ++i)
{
if (m_pages[i] == 0) {
raw_data[data_size] = 0;
} else {
raw_data[data_size] = 1;
memcpy(raw_data + data_size + 1, m_pages[i], PAGE_SIZE);
data_size += PAGE_SIZE;
}
data_size += 1;
}
return data_size;
}
/*!
* Function for populating the pages of the memory using the available raw
* data. Each page has a byte associate with it, which represents whether the
* page was NULL or not, when all the pages were collated. The function assumes
* that the number of pages in the memory are same as those that were recorded
* in the checkpoint.
*/
inline void
MemoryVector::populatePages(uint8_t *raw_data)
{
uint32_t data_size = 0;
uint32_t num_pages = 0;
/* Read the number of pages that were stored. */
memcpy(&num_pages, raw_data, sizeof(uint32_t));
data_size = sizeof(uint32_t);
assert(num_pages == m_num_pages);
DPRINTF(RubyCacheTrace, "Populating %d pages\n", num_pages);
for (uint32_t i = 0;i < m_num_pages; ++i)
{
assert(m_pages[i] == 0);
if (raw_data[data_size] != 0) {
m_pages[i] = new uint8_t[PAGE_SIZE];
memcpy(m_pages[i], raw_data + data_size + 1, PAGE_SIZE);
data_size += PAGE_SIZE;
}
data_size += 1;
}
}
2010-03-23 02:43:53 +01:00
#endif // __MEM_RUBY_SYSTEM_MEMORYVECTOR_HH__