gem5/cpu/beta_cpu/commit_impl.hh

422 lines
14 KiB
C++
Raw Normal View History

// @todo: Bug when something reaches execute, and mispredicts, but is never
// put into the ROB because the ROB is full. Need rename stage to predict
// the free ROB entries better.
#ifndef __COMMIT_IMPL_HH__
#define __COMMIT_IMPL_HH__
#include "base/timebuf.hh"
#include "cpu/beta_cpu/commit.hh"
#include "cpu/exetrace.hh"
template<class Impl>
SimpleCommit<Impl>::SimpleCommit(Params &params)
: dcacheInterface(params.dcacheInterface),
iewToCommitDelay(params.iewToCommitDelay),
renameToROBDelay(params.renameToROBDelay),
renameWidth(params.renameWidth),
iewWidth(params.executeWidth),
commitWidth(params.commitWidth)
{
_status = Idle;
}
template<class Impl>
void
SimpleCommit<Impl>::setCPU(FullCPU *cpu_ptr)
{
DPRINTF(Commit, "Commit: Setting CPU pointer.\n");
cpu = cpu_ptr;
}
template<class Impl>
void
SimpleCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
DPRINTF(Commit, "Commit: Setting time buffer pointer.\n");
timeBuffer = tb_ptr;
// Setup wire to send information back to IEW.
toIEW = timeBuffer->getWire(0);
// Setup wire to read data from IEW (for the ROB).
robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
}
template<class Impl>
void
SimpleCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
{
DPRINTF(Commit, "Commit: Setting rename queue pointer.\n");
renameQueue = rq_ptr;
// Setup wire to get instructions from rename (for the ROB).
fromRename = renameQueue->getWire(-renameToROBDelay);
}
template<class Impl>
void
SimpleCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
{
DPRINTF(Commit, "Commit: Setting IEW queue pointer.\n");
iewQueue = iq_ptr;
// Setup wire to get instructions from IEW.
fromIEW = iewQueue->getWire(-iewToCommitDelay);
}
template<class Impl>
void
SimpleCommit<Impl>::setROB(ROB *rob_ptr)
{
DPRINTF(Commit, "Commit: Setting ROB pointer.\n");
rob = rob_ptr;
}
template<class Impl>
void
SimpleCommit<Impl>::tick()
{
// If the ROB is currently in its squash sequence, then continue
// to squash. In this case, commit does not do anything. Otherwise
// run commit.
if (_status == ROBSquashing) {
if (rob->isDoneSquashing()) {
_status = Running;
} else {
rob->doSquash();
// Send back sequence number of tail of ROB, so other stages
// can squash younger instructions. Note that really the only
// stage that this is important for is the IEW stage; other
// stages can just clear all their state as long as selective
// replay isn't used.
toIEW->commitInfo.doneSeqNum = rob->readTailSeqNum();
toIEW->commitInfo.robSquashing = true;
}
} else {
commit();
}
markCompletedInsts();
// Writeback number of free ROB entries here.
DPRINTF(Commit, "Commit: ROB has %d free entries.\n",
rob->numFreeEntries());
toIEW->commitInfo.freeROBEntries = rob->numFreeEntries();
}
template<class Impl>
void
SimpleCommit<Impl>::commit()
{
//////////////////////////////////////
// Check for interrupts
//////////////////////////////////////
// Process interrupts if interrupts are enabled and not in PAL mode.
// Take the PC from commit and write it to the IPR, then squash. The
// interrupt completing will take care of restoring the PC from that value
// in the IPR. Look at IPR[EXC_ADDR];
// hwrei() is what resets the PC to the place where instruction execution
// beings again.
#ifdef FULL_SYSTEM
if (ISA::check_interrupts &&
cpu->check_interrupts() &&
!xc->inPalMode()) {
// Will need to squash all instructions currently in flight and have
// the interrupt handler restart at the last non-committed inst.
// Most of that can be handled through the trap() function. The
// processInterrupts() function really just checks for interrupts
// and then calls trap() if there is an interrupt present.
// CPU will handle implementation of the interrupt.
cpu->processInterrupts();
}
#endif // FULL_SYSTEM
////////////////////////////////////
// Check for squash signal, handle that first
////////////////////////////////////
// Want to mainly check if the IEW stage is telling the ROB to squash.
// Should I also check if the commit stage is telling the ROB to squah?
// This might be necessary to keep the same timing between the IQ and
// the ROB...
if (robInfoFromIEW->iewInfo.squash) {
DPRINTF(Commit, "Commit: Squashing instructions in the ROB.\n");
_status = ROBSquashing;
InstSeqNum squashed_inst = robInfoFromIEW->iewInfo.squashedSeqNum;
rob->squash(squashed_inst);
// Send back the sequence number of the squashed instruction.
toIEW->commitInfo.doneSeqNum = squashed_inst;
// Send back the squash signal to tell stages that they should squash.
toIEW->commitInfo.squash = true;
// Send back the rob squashing signal so other stages know that the
// ROB is in the process of squashing.
toIEW->commitInfo.robSquashing = true;
toIEW->commitInfo.nextPC = robInfoFromIEW->iewInfo.nextPC;
}
if (_status != ROBSquashing) {
getInsts();
commitInsts();
}
// If the ROB is empty, we can set this stage to idle. Use this
// in the future when the Idle status will actually be utilized.
#if 0
if (rob->isEmpty()) {
DPRINTF(Commit, "Commit: ROB is empty. Status changed to idle.\n");
_status = Idle;
// Schedule an event so that commit will actually wake up
// once something gets put in the ROB.
}
#endif
}
// Loop that goes through as many instructions in the ROB as possible and
// tries to commit them. The actual work for committing is done by the
// commitHead() function.
template<class Impl>
void
SimpleCommit<Impl>::commitInsts()
{
////////////////////////////////////
// Handle commit
// Note that commit will be handled prior to the ROB so that the ROB
// only tries to commit instructions it has in this current cycle, and
// not instructions it is writing in during this cycle.
// Can't commit and squash things at the same time...
////////////////////////////////////
DynInst *head_inst = rob->readHeadInst();
unsigned num_committed = 0;
// Commit as many instructions as possible until the commit bandwidth
// limit is reached, or it becomes impossible to commit any more.
while (!rob->isEmpty() &&
head_inst->readyToCommit() &&
num_committed < commitWidth)
{
DPRINTF(Commit, "Commit: Trying to commit head instruction.\n");
// If the head instruction is squashed, it is ready to retire at any
// time. However, we need to avoid updating any other state
// incorrectly if it's already been squashed.
if (head_inst->isSquashed()) {
// Hack to avoid the instruction being retired (and deleted) if
// it hasn't been through the IEW stage yet.
if (!head_inst->isExecuted()) {
break;
}
DPRINTF(Commit, "Commit: Retiring squashed instruction from "
"ROB.\n");
// Tell ROB to retire head instruction. This retires the head
// inst in the ROB without affecting any other stages.
rob->retireHead();
++num_committed;
} else {
// Increment the total number of non-speculative instructions
// executed.
// Hack for now: it really shouldn't happen until after the
// commit is deemed to be successful.
cpu->funcExeInst++;
// Try to commit the head instruction.
bool commit_success = commitHead(head_inst, num_committed);
// Update what instruction we are looking at if the commit worked.
if(commit_success) {
++num_committed;
// Send back which instruction has been committed.
// @todo: Update this later when a wider pipeline is used.
// Hmm, can't really give a pointer here...perhaps the
// sequence number instead (copy).
toIEW->commitInfo.doneSeqNum = head_inst->seqNum;
cpu->instDone();
} else {
break;
}
}
// Update the pointer to read the next instruction in the ROB.
head_inst = rob->readHeadInst();
}
}
template<class Impl>
bool
SimpleCommit<Impl>::commitHead(DynInst *head_inst, unsigned inst_num)
{
// Make sure instruction is valid
assert(head_inst);
Fault fault = No_Fault;
// If the head instruction is a store or a load, then execute it
// because this simple model does no speculative memory access.
// Hopefully this covers all memory references.
// Also check if it's nonspeculative. Or a nop. Then it will be
// executed only when it reaches the head of the ROB. Actually
// executing a nop is a bit overkill...
if (head_inst->isStore() ||
head_inst->isLoad() ||
head_inst->isNonSpeculative() ||
head_inst->isNop()) {
DPRINTF(Commit, "Commit: Executing a memory reference or "
"nonspeculative instruction at commit, inst PC %#x\n",
head_inst->PC);
fault = head_inst->execute();
// Tell CPU to tell IEW to tell IQ (nasty chain of calls) that
// this instruction has completed. Could predicate this on
// whether or not the instruction has a destination.
// Slightly unrealistic, but will not really be a factor once
// a real load/store queue is added.
cpu->wakeDependents(head_inst);
}
// Check if memory access was successful.
if (fault != No_Fault) {
// Handle data cache miss here. In the future, set the status
// to data cache miss, then exit the stage. Have an event
// that handles commiting the head instruction, then setting
// the stage back to running, when the event is run. (just
// make sure that event is commit's run for that cycle)
panic("Commit: Load/store instruction failed, not sure what "
"to do.\n");
// Also will want to clear the instruction's fault after being
// handled here so it's not handled again below.
}
// Now check if it's one of the special trap or barrier or
// serializing instructions.
if (head_inst->isThreadSync() ||
head_inst->isSerializing() ||
head_inst->isMemBarrier() ||
head_inst->isWriteBarrier() )
{
// Not handled for now. Mem barriers and write barriers are safe
// to simply let commit as memory accesses only happen once they
// reach the head of commit. Not sure about the other two.
panic("Serializing or barrier instructions"
" are not handled yet.\n");
}
// Check if the instruction caused a fault. If so, trap.
if (head_inst->getFault() != No_Fault) {
#ifdef FULL_SYSTEM
cpu->trap(fault);
#else // !FULL_SYSTEM
panic("fault (%d) detected @ PC %08p", head_inst->getFault(),
head_inst->PC);
#endif // FULL_SYSTEM
}
// Check if we're really ready to commit. If not then return false.
// I'm pretty sure all instructions should be able to commit if they've
// reached this far. For now leave this in as a check.
if(!rob->isHeadReady()) {
DPRINTF(Commit, "Commit: Unable to commit head instruction!\n");
return false;
}
//If it's a branch, then send back branch prediction update info
//to the fetch stage.
// This should be handled in the iew stage if a mispredict happens...
#if 0
if (head_inst->isControl()) {
toIEW->nextPC = head_inst->readPC();
//Maybe switch over to BTB incorrect.
toIEW->btbMissed = head_inst->btbMiss();
toIEW->target = head_inst->nextPC;
//Maybe also include global history information.
//This simple version will have no branch prediction however.
}
#endif
#if 0
// Check if the instruction has a destination register.
// If so add the previous physical register of its logical register's
// destination to the free list through the time buffer.
for (int i = 0; i < head_inst->numDestRegs(); i++)
{
toIEW->commitInfo.freeRegs.push_back(head_inst->prevDestRegIdx(i));
}
#endif
// Now that the instruction is going to be committed, finalize its
// trace data.
if (head_inst->traceData) {
head_inst->traceData->finalize();
}
//Finally clear the head ROB entry.
rob->retireHead();
// Return true to indicate that we have committed an instruction.
return true;
}
template<class Impl>
void
SimpleCommit<Impl>::getInsts()
{
//////////////////////////////////////
// Handle ROB functions
//////////////////////////////////////
// Read any issued instructions and place them into the ROB. Do this
// prior to squashing to avoid having instructions in the ROB that
// don't get squashed properly.
for (int inst_num = 0;
fromRename->insts[inst_num] != NULL && inst_num < renameWidth;
++inst_num)
{
DPRINTF(Commit, "Commit: Inserting PC %#x into ROB.\n",
fromRename->insts[inst_num]->readPC());
rob->insertInst(fromRename->insts[inst_num]);
}
}
template<class Impl>
void
SimpleCommit<Impl>::markCompletedInsts()
{
// Grab completed insts out of the IEW instruction queue, and mark
// instructions completed within the ROB.
for (int inst_num = 0;
fromIEW->insts[inst_num] != NULL && inst_num < iewWidth;
++inst_num)
{
DPRINTF(Commit, "Commit: Marking PC %#x, SN %i ready within ROB.\n",
fromIEW->insts[inst_num]->readPC(),
fromIEW->insts[inst_num]->seqNum);
// Mark the instruction as ready to commit.
fromIEW->insts[inst_num]->setCanCommit();
}
}
template<class Impl>
uint64_t
SimpleCommit<Impl>::readCommitPC()
{
return rob->readHeadPC();
}
#endif // __COMMIT_IMPL_HH__