xv6-cs450/proc.c
rsc 856e1fc1ad Attempt to clean up newproc somewhat.
Also remove all calls to memcpy in favor of
memmove, which has defined semantics when
the ranges overlap.  The fact that memcpy was
working in console.c to scroll the screen is not
guaranteed by all implementations.
2006-07-16 01:47:40 +00:00

388 lines
9.3 KiB
C

#include "types.h"
#include "mmu.h"
#include "x86.h"
#include "param.h"
#include "fd.h"
#include "proc.h"
#include "defs.h"
#include "spinlock.h"
struct spinlock proc_table_lock;
struct proc proc[NPROC];
struct proc *curproc[NCPU];
int next_pid = 1;
extern void forkret(void);
extern void forkret1(struct Trapframe*);
/*
* set up a process's task state and segment descriptors
* correctly, given its current size and address in memory.
* this should be called whenever the latter change.
* doesn't change the cpu's current segmentation setup.
*/
void
setupsegs(struct proc *p)
{
memset(&p->ts, 0, sizeof(struct Taskstate));
p->ts.ts_ss0 = SEG_KDATA << 3;
p->ts.ts_esp0 = (unsigned)(p->kstack + KSTACKSIZE);
// XXX it may be wrong to modify the current segment table!
p->gdt[0] = SEG_NULL;
p->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
p->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
p->gdt[SEG_TSS] = SEG16(STS_T32A, (unsigned) &p->ts,
sizeof(p->ts), 0);
p->gdt[SEG_TSS].sd_s = 0;
p->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (unsigned)p->mem, p->sz, 3);
p->gdt[SEG_UDATA] = SEG(STA_W, (unsigned)p->mem, p->sz, 3);
p->gdt_pd.pd__garbage = 0;
p->gdt_pd.pd_lim = sizeof(p->gdt) - 1;
p->gdt_pd.pd_base = (unsigned) p->gdt;
}
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and return it.
// Otherwise return 0.
struct proc*
allocproc(void)
{
int i;
struct proc *p;
for(i = 0; i < NPROC; i++){
p = &proc[i];
if(p->state == UNUSED){
p->state = EMBRYO;
return p;
}
}
return 0;
}
// Create a new process copying p as the parent.
// Does not copy the kernel stack.
// Instead, sets up stack to return as if from system call.
// Caller must arrange for process to run (set state to RUNNABLE).
struct proc *
copyproc(struct proc* p)
{
int i;
struct proc *np;
// Allocate process.
acquire(&proc_table_lock);
if((np = allocproc()) == 0){
release(&proc_table_lock);
return 0;
}
np->pid = next_pid++;
np->ppid = p->pid;
release(&proc_table_lock);
// Copy process image memory.
np->sz = p->sz;
np->mem = kalloc(np->sz);
if(np->mem == 0){
np->state = UNUSED;
return 0;
}
memmove(np->mem, p->mem, np->sz);
// Allocate kernel stack.
np->kstack = kalloc(KSTACKSIZE);
if(np->kstack == 0){
kfree(np->mem, np->sz);
np->state = UNUSED;
return 0;
}
// Initialize segment table.
setupsegs(np);
// Copy trapframe registers from parent.
np->tf = (struct Trapframe*)(np->kstack + KSTACKSIZE) - 1;
*np->tf = *p->tf;
// Clear %eax so that fork system call returns 0 in child.
np->tf->tf_regs.reg_eax = 0;
// Set up new jmpbuf to start executing at forkret (see below).
memset(&np->jmpbuf, 0, sizeof np->jmpbuf);
np->jmpbuf.jb_eip = (unsigned)forkret;
np->jmpbuf.jb_esp = (unsigned)np->tf;
// Copy file descriptors
for(i = 0; i < NOFILE; i++){
np->fds[i] = p->fds[i];
if(np->fds[i])
fd_reference(np->fds[i]);
}
return np;
}
// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - longjmp to start running that process
// - eventually that process transfers control back
// via longjmp back to the top of scheduler.
void
scheduler(void)
{
struct proc *p;
int i;
cprintf("start scheduler on cpu %d jmpbuf %p\n", cpu(), &cpus[cpu()].jmpbuf);
cpus[cpu()].lastproc = &proc[0];
for(;;){
// Loop over process table looking for process to run.
acquire(&proc_table_lock);
for(i = 0; i < NPROC; i++){
p = &proc[i];
if(p->state != RUNNABLE)
continue;
// Run this process.
// XXX move this into swtch or trapret or something.
// It can run on the other stack.
// h/w sets busy bit in TSS descriptor sometimes, and faults
// if it's set in LTR. so clear tss descriptor busy bit.
p->gdt[SEG_TSS].sd_type = STS_T32A;
// XXX should probably have an lgdt() function in x86.h
// to confine all the inline assembly.
// XXX probably ought to lgdt on trap return too, in case
// a system call has moved a program or changed its size.
asm volatile("lgdt %0" : : "g" (p->gdt_pd.pd_lim));
ltr(SEG_TSS << 3);
// Switch to chosen process. It is the process's job
// to release proc_table_lock and then reacquire it
// before jumping back to us.
if(0) cprintf("cpu%d: run %d\n", cpu(), p-proc);
curproc[cpu()] = p;
p->state = RUNNING;
if(setjmp(&cpus[cpu()].jmpbuf) == 0)
longjmp(&p->jmpbuf);
// Process is done running for now.
// It should have changed its p->state before coming back.
curproc[cpu()] = 0;
if(p->state == RUNNING)
panic("swtch to scheduler with state=RUNNING");
// XXX if not holding proc_table_lock panic.
}
release(&proc_table_lock);
if(cpus[cpu()].nlock != 0)
panic("holding locks in scheduler");
// With proc_table_lock released, there are no
// locks held on this cpu, so interrupts are enabled.
// Hardware interrupts can happen here.
// Also, releasing the lock here lets the other CPUs
// look for runnable processes too.
}
}
// Enter scheduler. Must already hold proc_table_lock
// and have changed curproc[cpu()]->state.
void
sched(void)
{
if(setjmp(&curproc[cpu()]->jmpbuf) == 0)
longjmp(&cpus[cpu()].jmpbuf);
}
// Give up the CPU for one scheduling round.
void
yield(void)
{
struct proc *p;
if((p=curproc[cpu()]) == 0 || curproc[cpu()]->state != RUNNING)
panic("yield");
acquire(&proc_table_lock);
p->state = RUNNABLE;
sched();
release(&proc_table_lock);
}
// A process's very first scheduling by scheduler()
// will longjmp here to do the first jump into user space.
void
forkret(void)
{
// Still holding proc_table_lock from scheduler.
release(&proc_table_lock);
// Jump into assembly, never to return.
forkret1(curproc[cpu()]->tf);
}
// Atomically release lock and sleep on chan.
// Reacquires lock when reawakened.
void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = curproc[cpu()];
if(p == 0)
panic("sleep");
// Must acquire proc_table_lock in order to
// change p->state and then call sched.
// Once we hold proc_table_lock, we can be
// guaranteed that we won't miss any wakeup
// (wakeup runs with proc_table_lock locked),
// so it's okay to release lk.
if(lk != &proc_table_lock){
acquire(&proc_table_lock);
release(lk);
}
// Go to sleep.
p->chan = chan;
p->state = SLEEPING;
sched();
// Tidy up.
p->chan = 0;
// Reacquire original lock.
if(lk != &proc_table_lock){
release(&proc_table_lock);
acquire(lk);
}
}
// Wake up all processes sleeping on chan.
// Proc_table_lock must be held.
void
wakeup1(void *chan)
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan)
p->state = RUNNABLE;
}
// Wake up all processes sleeping on chan.
// Proc_table_lock is acquired and released.
void
wakeup(void *chan)
{
acquire(&proc_table_lock);
wakeup1(chan);
release(&proc_table_lock);
}
// Kill the process with the given pid.
// Process won't actually exit until it returns
// to user space (see trap in trap.c).
int
proc_kill(int pid)
{
struct proc *p;
acquire(&proc_table_lock);
for(p = proc; p < &proc[NPROC]; p++){
if(p->pid == pid){
p->killed = 1;
// Wake process from sleep if necessary.
if(p->state == SLEEPING)
p->state = RUNNABLE;
release(&proc_table_lock);
return 0;
}
}
release(&proc_table_lock);
return -1;
}
// Exit the current process. Does not return.
// Exited processes remain in the zombie state
// until their parent calls wait() to find out they exited.
void
proc_exit()
{
struct proc *p;
struct proc *cp = curproc[cpu()];
int fd;
// Close all open files.
for(fd = 0; fd < NOFILE; fd++){
if(cp->fds[fd]){
fd_close(cp->fds[fd]);
cp->fds[fd] = 0;
}
}
acquire(&proc_table_lock);
// Wake up our parent.
for(p = proc; p < &proc[NPROC]; p++)
if(p->pid == cp->ppid)
wakeup1(p);
// Reparent our children to process 1.
for(p = proc; p < &proc[NPROC]; p++)
if(p->ppid == cp->pid)
p->ppid = 1;
// Jump into the scheduler, never to return.
cp->state = ZOMBIE;
sched();
panic("zombie exit");
}
// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
proc_wait(void)
{
struct proc *p;
struct proc *cp = curproc[cpu()];
int i, havekids, pid;
acquire(&proc_table_lock);
for(;;){
// Scan through table looking zombie children.
havekids = 0;
for(i = 0; i < NPROC; i++){
p = &proc[i];
if(p->ppid == cp->pid){
if(p->state == ZOMBIE){
// Found one.
kfree(p->mem, p->sz);
kfree(p->kstack, KSTACKSIZE);
pid = p->pid;
p->state = UNUSED;
p->pid = 0;
release(&proc_table_lock);
return pid;
}
havekids = 1;
}
}
// No point waiting if we don't have any children.
if(!havekids){
release(&proc_table_lock);
return -1;
}
// Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(cp, &proc_table_lock);
}
}