// File system implementation. // // Four layers: // + Blocks: allocator for raw disk blocks. // + Files: inode allocator, reading, writing, metadata. // + Directories: inode with special contents (list of other inodes!) // + Names: paths like /usr/rtm/xv6/fs.c for convenient naming. // // Disk layout is: superblock, inodes, disk bitmap, data blocks. // // This file contains the low-level file system manipulation // routines. The (higher-level) system call implementations // are in sysfile.c. #include "types.h" #include "stat.h" #include "param.h" #include "x86.h" #include "mmu.h" #include "proc.h" #include "defs.h" #include "spinlock.h" #include "buf.h" #include "fs.h" #include "fsvar.h" #include "dev.h" #define min(a, b) ((a) < (b) ? (a) : (b)) static void itrunc(struct inode*); // Blocks. // Allocate a disk block. static uint balloc(uint dev) { int b, bi, m, ninodes, size; struct buf *bp; struct superblock *sb; bp = bread(dev, 1); sb = (struct superblock*) bp->data; size = sb->size; ninodes = sb->ninodes; for(b = 0; b < size; b++) { if(b % BPB == 0) { brelse(bp); bp = bread(dev, BBLOCK(b, ninodes)); } bi = b % BPB; m = 0x1 << (bi % 8); if((bp->data[bi/8] & m) == 0) { // is block free? bp->data[bi/8] |= 0x1 << (bi % 8); bwrite(bp); // mark it allocated on disk brelse(bp); return b; } } panic("balloc: out of blocks"); } // Free a disk block. static void bfree(int dev, uint b) { struct buf *bp; struct superblock *sb; int bi, m, ninodes; bp = bread(dev, 1); sb = (struct superblock*) bp->data; ninodes = sb->ninodes; brelse(bp); bp = bread(dev, b); memset(bp->data, 0, BSIZE); bwrite(bp); brelse(bp); bp = bread(dev, BBLOCK(b, ninodes)); bi = b % BPB; m = 0x1 << (bi % 8); bp->data[bi/8] &= ~m; bwrite(bp); // mark it free on disk brelse(bp); } // Inodes // // The inodes are laid out sequentially on disk immediately after // the superblock. The kernel keeps a cache of the in-use // on-disk structures to provide a place for synchronizing access // to inodes shared between multiple processes. // // ip->ref counts the number of references to this // inode; references are typically kept in struct file and in cp->cwd. // When ip->ref falls to zero, the inode is no longer cached. // It is an error to use an inode without holding a reference to it. // // Inodes can be marked busy, just like bufs, meaning // that some process has exclusive use of the inode. // Processes are only allowed to read and write inode // metadata and contents when holding the inode's lock. // Because inodes locks are held during disk accesses, // they are implemented using a flag, as in the buffer cache, // not using spin locks. Callers are responsible for locking // inodes before passing them to routines in this file; leaving // this responsibility with the caller makes it possible for them // to create arbitrarily-sized atomic operations. // // To give maximum control over locking to the callers, // the routines in this file that return inode pointers // return pointers to *unlocked* inodes. It is the callers' // responsibility to lock them before using them. struct { struct spinlock lock; struct inode inode[NINODE]; } icache; void iinit(void) { initlock(&icache.lock, "icache.lock"); } // Find the inode with number inum on device dev // and return the in-memory copy. h static struct uinode* iget(uint dev, uint inum) { struct inode *ip, *empty; acquire(&icache.lock); // Try for cached inode. empty = 0; for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++){ if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){ ip->ref++; release(&icache.lock); return (struct uinode*)ip; } if(empty == 0 && ip->ref == 0) // Remember empty slot. empty = ip; } // Allocate fresh inode. if(empty == 0) panic("iget: no inodes"); ip = empty; ip->dev = dev; ip->inum = inum; ip->ref = 1; ip->flags = 0; release(&icache.lock); return (struct uinode*)ip; } // Increment reference count for ip. // Returns ip to enable ip = idup(ip1) idiom. struct uinode* idup(struct uinode *uip) { struct inode *ip; ip = (struct inode*)uip; acquire(&icache.lock); ip->ref++; release(&icache.lock); return uip; } // Lock the given inode. struct inode* ilock(struct uinode *uip) { struct buf *bp; struct dinode *dip; struct inode *ip; ip = (struct inode*)uip; if(ip == 0) return 0; if(ip->ref < 1) panic("ilock: no refs"); acquire(&icache.lock); while(ip->flags & I_BUSY) sleep(ip, &icache.lock); ip->flags |= I_BUSY; release(&icache.lock); if(!(ip->flags & I_VALID)){ bp = bread(ip->dev, IBLOCK(ip->inum)); dip = &((struct dinode*)(bp->data))[ip->inum % IPB]; ip->type = dip->type; ip->major = dip->major; ip->minor = dip->minor; ip->nlink = dip->nlink; ip->size = dip->size; memmove(ip->addrs, dip->addrs, sizeof(ip->addrs)); brelse(bp); ip->flags |= I_VALID; if(ip->type == 0) panic("ilock: no type"); } return ip; } // Unlock the given inode. struct uinode* iunlock(struct inode *ip) { if(ip == 0) return 0; if(!(ip->flags & I_BUSY) || ip->ref < 1) panic("iunlock"); acquire(&icache.lock); ip->flags &= ~I_BUSY; wakeup(ip); release(&icache.lock); return (struct uinode*)ip; } // Caller holds reference to unlocked ip. Drop reference. void iput(struct uinode *uip) { struct inode *ip; ip = (struct inode*)uip; acquire(&icache.lock); if(ip->ref == 1 && (ip->flags & I_VALID) && ip->nlink == 0) { // inode is no longer used: truncate and free inode. if(ip->flags & I_BUSY) panic("iput busy"); ip->flags |= I_BUSY; release(&icache.lock); // XXX convince rsc that no one will come find this inode. itrunc(ip); ip->type = 0; iupdate(ip); acquire(&icache.lock); ip->flags &= ~I_BUSY; } ip->ref--; release(&icache.lock); } // Allocate a new inode with the given type on device dev. struct uinode* ialloc(uint dev, short type) { int inum, ninodes; struct buf *bp; struct dinode *dip; struct superblock *sb; bp = bread(dev, 1); sb = (struct superblock*)bp->data; ninodes = sb->ninodes; brelse(bp); for(inum = 1; inum < ninodes; inum++) { // loop over inode blocks bp = bread(dev, IBLOCK(inum)); dip = &((struct dinode*)(bp->data))[inum % IPB]; if(dip->type == 0) { // a free inode memset(dip, 0, sizeof(*dip)); dip->type = type; bwrite(bp); // mark it allocated on the disk brelse(bp); return iget(dev, inum); } brelse(bp); } panic("ialloc: no inodes"); } // Copy inode, which has changed, from memory to disk. void iupdate(struct inode *ip) { struct buf *bp; struct dinode *dip; bp = bread(ip->dev, IBLOCK(ip->inum)); dip = &((struct dinode*)(bp->data))[ip->inum % IPB]; dip->type = ip->type; dip->major = ip->major; dip->minor = ip->minor; dip->nlink = ip->nlink; dip->size = ip->size; memmove(dip->addrs, ip->addrs, sizeof(ip->addrs)); bwrite(bp); brelse(bp); } // Inode contents // // The contents (data) associated with each inode is stored // in a sequence of blocks on the disk. The first NDIRECT blocks // are stored in ip->addrs[]. The next NINDIRECT blocks are // listed in the block ip->addrs[INDIRECT]. // Return the disk block address of the nth block in inode ip. // If there is no such block, alloc controls whether one is allocated. static uint bmap(struct inode *ip, uint bn, int alloc) { uint addr, *a; struct buf *bp; if(bn < NDIRECT) { if((addr = ip->addrs[bn]) == 0) { if(!alloc) return -1; ip->addrs[bn] = addr = balloc(ip->dev); } return addr; } bn -= NDIRECT; if(bn < NINDIRECT) { // Load indirect block, allocating if necessary. if((addr = ip->addrs[INDIRECT]) == 0) { if(!alloc) return -1; ip->addrs[INDIRECT] = addr = balloc(ip->dev); } bp = bread(ip->dev, addr); a = (uint*)bp->data; if((addr = a[bn]) == 0) { if(!alloc) { brelse(bp); return -1; } a[bn] = addr = balloc(ip->dev); bwrite(bp); } brelse(bp); return addr; } panic("bmap: out of range"); } // PAGEBREAK: 30 // Truncate inode (discard contents). static void itrunc(struct inode *ip) { int i, j; struct buf *bp; uint *a; for(i = 0; i < NDIRECT; i++) { if(ip->addrs[i]) { bfree(ip->dev, ip->addrs[i]); ip->addrs[i] = 0; } } if(ip->addrs[INDIRECT]) { bp = bread(ip->dev, ip->addrs[INDIRECT]); a = (uint*)bp->data; for(j = 0; j < NINDIRECT; j++) { if(a[j]) bfree(ip->dev, a[j]); } brelse(bp); ip->addrs[INDIRECT] = 0; } ip->size = 0; iupdate(ip); } // Copy stat information from inode. void stati(struct inode *ip, struct stat *st) { st->dev = ip->dev; st->ino = ip->inum; st->type = ip->type; st->nlink = ip->nlink; st->size = ip->size; } //PAGEBREAK! // Read data from inode. int readi(struct inode *ip, char *dst, uint off, uint n) { uint tot, m; struct buf *bp; if(ip->type == T_DEV) { if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].read) return -1; return devsw[ip->major].read(ip->minor, dst, n); } if(off + n < off) return -1; if(off + n > ip->size) n = ip->size - off; for(tot=0; totdev, bmap(ip, off/BSIZE, 0)); m = min(n - tot, BSIZE - off%BSIZE); memmove(dst, bp->data + off%BSIZE, m); brelse(bp); } return n; } // PAGEBREAK! // Write data to inode. int writei(struct inode *ip, char *src, uint off, uint n) { uint tot, m; struct buf *bp; if(ip->type == T_DEV) { if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].write) return -1; return devsw[ip->major].write(ip->minor, src, n); } if(off + n < off) return -1; if(off + n > MAXFILE*BSIZE) n = MAXFILE*BSIZE - off; for(tot=0; totdev, bmap(ip, off/BSIZE, 1)); m = min(n - tot, BSIZE - off%BSIZE); memmove(bp->data + off%BSIZE, src, m); bwrite(bp); brelse(bp); } if(n > 0 && off > ip->size) { ip->size = off; iupdate(ip); } return n; } //PAGEBREAK! // Directories int namecmp(const char *s, const char *t) { int i; for(i=0; itype != T_DIR) return 0; for(off = 0; off < dp->size; off += BSIZE){ bp = bread(dp->dev, bmap(dp, off / BSIZE, 0)); for(de = (struct dirent*) bp->data; de < (struct dirent*) (bp->data + BSIZE); de++){ if(de->inum == 0) continue; if(namecmp(name, de->name) == 0){ // entry matches path element if(poff) *poff = off + (uchar*)de - bp->data; inum = de->inum; brelse(bp); return iget(dp->dev, inum); } } brelse(bp); } return 0; } // Copy one name to another. static void namecpy(char *s, const char *t) { int i; for(i=0; isize; off += sizeof(de)){ if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de)) panic("dirwrite read"); if(de.inum == 0) break; } namecpy(de.name, name); de.inum = ino; if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de)) panic("dirwrite"); return 0; } // Paths // Copy the next path element from path into name. // Return a pointer to the element following the copied one. // The returned path has no leading slashes, // so the caller can check *path=='\0' to see if the name is the last one. // If no name to remove, return 0. // // Examples: // skipelem("a/bb/c", name) = "bb/c", setting name = "a" // skipelem("///a/bb", name) = "b", setting name="a" // skipelem("", name) = skipelem("////", name) = 0 // static char* skipelem(char *path, char *name) { char *s; int len; while(*path == '/') path++; if(*path == 0) return 0; s = path; while(*path != '/' && *path != 0) path++; len = path - s; if(len >= DIRSIZ) memmove(name, s, DIRSIZ); else{ memmove(name, s, len); name[len] = 0; } while(*path == '/') path++; return path; } // Look up and return the inode for a path name. // If parent is set, return the inode for the parent // and write the final path element to name, which // should have room for DIRSIZ bytes. static struct uinode* _namei(char *path, int parent, char *name) { struct uinode *dp, *ip; struct inode *dpl; uint off; if(*path == '/') dp = iget(ROOTDEV, 1); else dp = idup(cp->cwd); while((path = skipelem(path, name)) != 0){ dpl = ilock(dp); if(dpl->type != T_DIR){ iunlock(dpl); iput(dp); return 0; } if(parent && *path == '\0'){ // Stop one level early. iunlock(dpl); return dp; } if((ip = dirlookup(dpl, name, &off)) == 0){ iunlock(dpl); iput(dp); iput(ip); return 0; } iunlock(dpl); iput(dp); dp = ip; } if(parent) return 0; return dp; } struct uinode* namei(char *path) { char name[DIRSIZ]; return _namei(path, 0, name); } struct uinode* nameiparent(char *path, char *name) { return _namei(path, 1, name); }