
DRAFT as of February 19, 2011: Copyright 2009 Cox, Kaashoek, Morris

Chapter 4

Locking

Xv6 runs on multiprocessors, computers with multiple CPUs executing code inde-
pendently. These multiple CPUs operate on a single physical address space and share
data structures; xv6 must introduce a coordination mechanism to keep them from in-
terfering with each other. Even on a uniprocessor, xv6 must use some mechanism to
keep interrupt handlers from interfering with non-interrupt code. Xv6 uses the same
low-level concept for both: locks. Locks provide mutual exclusion, ensuring that only
one CPU at a time can hold a lock. If xv6 only accesses a data structure while hold-
ing a particular lock, then xv6 can be sure that only one CPU at a time is accessing
the data structure. In this situation, we say that the lock protects the data structure.

As an example, consider several processors sharing a single disk, such as the IDE
disk in xv6. The disk driver maintains a linked list of the outstanding disk requests
(3820) and processors may add new requests to the list concurrently (3954). If there were
no concurrent requests, you might implement the linked list as follows:

1 struct list {

2 int data;

3 struct list *next;

4 };

5

6 struct list *list = 0;

7

8 void

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

Proving this implementation correct is a typical exercise in a data structures and algo-
rithms class. Even though this implementation can be proved correct, it isn’t, at least
not on a multiprocessor. If two different CPUs execute insert at the same time, it
could happen that both execute line 15 before either executes 16. If this happens,
there will now be two list nodes with next set to the former value of list. When the
two assignments to list happen at line 16, the second one will overwrite the first; the
node involved in the first assignment will be lost. This kind of problem is called a
race condition. The problem with races is that they depend on the exact timing of the
two CPUs involved and are consequently difficult to reproduce. For example, adding

1



print statements while debugging insert might change the timing of the execution
enough to make the race disappear.

The typical way to avoid races is to use a lock. Locks ensure mutual exclusion, so
that only one CPU can execute insert at a time; this makes the scenario above im-
possible. The correctly locked version of the above code adds just a few lines (not
numbered):

6 struct list *list = 0;

struct lock listlock;

7

8 void

9 insert(int data)

10 {

11 struct list *l;

12

acquire(&listlock);

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

release(&listlock);

17 }

When we say that a lock protects data, we really mean that the lock protects some
collection of invariants that apply to the data. Invariants are properties of data struc-
tures that are maintained across operations. Typically, an operation’s correct behavior
depends on the invariants being true when the operation begins. The operation may
temporarily violate the invariants but must reestablish them before finishing. For ex-
ample, in the linked list case, the invariant is that list points at the first node in the
list and that each node’s next field points at the next node. The implementation of
insert vioilates this invariant temporarily: line X creates a new list element l with the
intent that l be the first node in the list, but l’s next pointer does not point at the
next node in the list yet (reestablished at line 15) and list does not point at l yet
(reestablished at line 16). The race condition we examined above happened because a
second CPU executed code that depended on the list invariants while they were (tem-
porarily) violated. Proper use of a lock ensures that only one CPU at a time can oper-
ate on the data structure, so that no CPU will execute a data structure operation when
the data structure’s invariants do not hold.

Code: Locks

Xv6’s represents a lock as a struct spinlock (1501). The critical field in the structure
is locked, a word that is zero when the lock is available and non-zero when it is held.
Logically, xv6 should acquire a lock by executing code like

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

2



26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Unfortunately, this implementation does not guarantee mutual exclusion on a modern
multiprocessor. It could happen that two (or more) CPUs simultaneously reach line
25, see that lk->locked is zero, and then both grab the lock by executing lines 26 and
27. At this point, two different CPUs hold the lock, which violates the mutual exclu-
sion property. Rather than helping us avoid race conditions, this implementation of
acquire has its own race condition. The problem here is that lines 25 and 26 execut-
ed as separate actions. In order for the routine above to be correct, lines 25 and 26
must execute in one atomic step.

To execute those two lines atomically, xv6 relies on a special 386 hardware in-
struction, xchg (0529). In one atomic operation, xchg swaps a word in memory with
the contents of a register. Acquire (1573) repeats this xchg instruction in a loop; each
iteration reads lk->locked and atomically sets it to 1 (1582). If the lock is held, lk-
>locked will already be 1, so the xchg returns 1 and the loop continues. If the xchg

returns 0, however, acquire has successfully acquired the lock—locked was 0 and is
now 1—so the loop can stop. Once the lock is acquired, acquire records, for debug-
ging, the CPU and stack trace that acquired the lock. When a process acquires a lock
and forget to release it, this information can help to identify the culprit. These debug-
ging fields are protected by the lock and must only be edited while holding the lock.

Release (1602) is the opposite of acquire: it clears the debugging fields and then
releases the lock.

Modularity and recursive locks

System design strives for clean, modular abstractions: it is best when a caller does
not need to know how a callee implements particular functionality. Locks interfere
with this modularity. For example, if a CPU holds a particular lock, it cannot call any
function f that will try to reacquire that lock: since the caller can’t release the lock un-
til f returns, if f tries to acquire the same lock, it will spin forever, or deadlock.

There are no transparent solutions that allow the caller and callee to hide which
locks they use. One common, transparent, but unsatisfactory solution is ‘‘recursive
locks,’’ which allow a callee to reacquire a lock already held by its caller. The problem
with this solution is that recursive locks can’t be used to protect invariants. After in-

sert called acquire(&listlock) above, it can assume that no other function holds
the lock, that no other function is in the middle of a list operation, and most impor-
tantly that all the list invariants hold. In a system with recursive locks, insert can as-
sume nothing after it calls acquire: perhaps acquire succeeded only because one of
insert’s caller already held the lock and was in the middle of editing the list data
structure. Maybe the invariants hold or maybe they don’t. The list no longer protects
them. Locks are just as important for protecting callers and callees from each other as
they are for protecting different CPUs from each other; recursive locks give up that

3



property.
Since there is no ideal transparent solution, we must consider locks part of the

function’s specification. The programmer must arrange that function doesn’t invoke a
function f while holding a lock that f needs. Locks force themselves into our abstrac-
tions.

Code: Using locks

A hard part about using locks is deciding how many locks to use and which data and
invariants each lock protects. There are a few basic principles. First, any time a vari-
able can be written by one CPU at the same time that another CPU can read or write
it, a lock should be introduced to keep the two operations from overlapping. Second,
remember that locks protect invariants: if an invariant involves multiple data struc-
tures, typically all of the structures need to be protected by a single lock to ensure the
invariant is maintained.

The rules above say when locks are necessary but say nothing about when locks
are unnecessary, and it is important for efficiency not to lock too much. If efficiency
wasn’t important, then one could use a uniprocessor computer and no worry at all
about locks. For protecting kernel data structures, it would suffice to create a single
lock that must be acquired on entering the kernel and released on exiting the kernel.
Many uniprocessor operating systems have been converted to run on multiprocessors
using this approach, sometimes called a ‘‘giant kernel lock,’’ but the approach sacrifices
true concurrency: only one CPU can execute in the kernel at a time. If the kernel
does any heavy computation, it would be more efficient to use a larger set of more
fine-grained locks, so that the kernel could execute on multiple CPUs simultaneously.

Ultimately, the choice of lock granularity is an exercise in parallel programming.
Xv6 uses a few coarse data-structure specific locks; for example, xv6 uses a single lock
protecting the process table and its invariants, which are described in Chapter 5. A
more fine-grained approach would be to have a lock per entry in the process table so
that threads working on different entries in the process table can proceed in parallel.
However, it complicates operations that have invariants over the whole process table,
since they might have to take out several locks. Hopefully, the examples of xv6 will
help convey how to use locks.

Lock ordering

If a code path through the kernel must take out several locks, it is important that all
code paths acquire the locks in the same order. If they don’t, there is a risk of dead-
lock. Let’s say two code paths in xv6 needs locks A and B, but code path 1 acquires
locks in the order A and B, and the other code acquires them in the order B and A.
This situation can result in a deadlock, because code path 1 might acquire lock A and
before it acquires lock B, code path 2 might acquire lock B. Now neither code path can
proceed, because code path 1 needs lock B, which code path 2 holds, and code path 2
needs lock A, which code path 1 holds. To avoid such deadlocks, all code paths must

4



acquire locks in the same order. Deadlock avoidance is another example illustrating
why locks must be part of a function’s specification: the caller must invoke functions
in a consistent order so that the functions acquire locks in the same order.

Because xv6 uses coarse-grained locks and xv6 is simple, xv6 has few lock-order
chains. The longest chain is only two deep. For example, ideintr holds the ide lock
while calling wakeup, which acquires the ptable lock. There are a number of other ex-
amples involving sleep and wakeup . These orderings come about because sleep and
wakeup have a complicated invariant, as discussed in Chapter 5. In the file system

there are a number of examples of chains of two because the file system must, for ex-
ample, acquire a lock on a directory and the lock on a file in that directory to unlink a
file from its parent directory correctly. xv6 always acquires the locks in the order first
parent directory and then the file.

Interrupt handlers

Xv6 uses locks to protect interrupt handlers running on one CPU from non-interrupt
code accessing the same data on another CPU. For example, the timer interrupt han-
dler (3164) increments ticks but another CPU might be in sys_sleep at the same
time, using the variable (3523). The lock tickslock synchronizes access by the two
CPUs to the single variable.

Locks are useful not just for synchronizing multiple CPUs but also for synchro-
nizing interrupt and non-interrupt code on the same CPU. The ticks variable is used
by the interrupt handler and also by the non-interrupt function sys_sleep, as we just
saw. If the non-interrupt code is manipulating a shared data structure, it may not be
safe for the CPU to interrupt that code and start running an interrupt handler that
will use the data structure. Xv6’s disables interrupts on a CPU when that CPU holds a
lock; this ensures proper data access and also avoids deadlocks: an interrupt handler
can never acquire a lock already held by the code it interrupted. One way to think
about this is that locks provide atomicity between code running on different processors
and turning off interrupts provides atomicity between code running on the same pro-
cessor.

Before attempting to acquire a lock, acquire calls pushcli (1575) to disable inter-
rupts. Release calls popcli (1621) to allow them to be enabled. (The underlying x86
instruction to disable interrupts is named cli.) Pushcli (1655) and popcli (1666) are
more than just wrappers around cli and sti: they are counted, so that it takes two
calls to popcli to undo two calls to pushcli; this way, if code acquires two different
locks, interrupts will not be reenabled until both locks have been released.

The interaction between interrupt handlers and non-interrupt code provides a
nice example why recursive locks are problematic. If xv6 used recursive locks (a sec-
ond acquire on a CPU is allowed if the first acquire happened on that CPU too), then
interrupt handlers could run while non-interrupt code is in a critical section. This
could create havoc, since when the interrupt handler runs, invariants that the handler
relies on might be temporarily violated. For example, ideintr (3902) assumes that the
linked list with outstanding requests is well-formed. If xv6 would have used recursive
locks, then ideintr might run while iderw is in the middle of manipulating the

5



linked list, and the linked list will end up in an incorrect state.

Memory ordering

This chapter has assumed that processors start and complete instructions in the
order in which they appear in the program. Many processors, however, execute in-
structions out of order to achieve higher performance. If an instruction takes many
cycles to complete, a processor may want to issue the instruction early so that it can
overlap with other instructions and avoid processor stalls. For example, a processor
may notice that in a serial sequence of instruction A and B are not dependent on each
other and start instruction B before A so that it will be completed when the processor
completes A. Concurrency, however, may expose this reordering to software, which
lead to incorrect behavior.

For example, one might wonder what happens if release just assigned 0 to lk-

>locked, instead of using xchg. The answer to this question is unclear, because differ-
ent generations of x86 processors make different guarantees about memory ordering.
If lk->locked=0, were allowed to be re-ordered say after popcli, than acquire might
break, because to another thread interrupts would be enabled before a lock is released.
To avoid relying on unclear processor specifications about memory ordering, xv6 takes
no risk and uses xchg, which processors must guarantee not to reorder.

Real world

locking is hard and not well understood.

approaches to synchronization still an active topic of research.

best to use locks as the base for higher-level constructs like synchronized queues, al-
though xv6 does not do this.

user space locks too; xv6 doesn’t let processes share memory so no need.

semaphores.

no need for atomicity really; lamport’s algorithm.

lock-free algorithms.

Exercises

1. get rid off the xchg in acquire. explain what happens when you run xv6?

6



2. move the acquire in iderw to before sleep. is there a race? why don’t you observe it
when booting xv6 and run slamfs? increase critical section with a dummy loop; what
do you see now? explain.

3. do posted homework question.

7


