
DRAFT as of February 19, 2011: Copyright 2009 Cox, Kaashoek, Morris

Chapter 8

File system calls

The previous chapter layed described the file system data structures, and how they
are used to implemented files and directories. This chapter completes the file system
by explaning how the system calls for file operations are implemented. In this chapter,
"file" means an open file.

Code: Files

Xv6 gives each process its own table of open files, as we saw in Chapter 0. Each
open file is represented by a struct file (3750), which is a wrapper around either an
inode or a pipe, plus an i/o offset. Each call to open creates a new open file (a new
struct file): if multiple processes open the same file independently, the different in-
stances will have different i/o offsets. On the other hand, a single open file (the same
struct file) can appear multiple times in one process’s file table and also in the file
tables of multiple processes. This would happen if one process used open to open the
file and then created aliases using dup or shared it with a child using fork. A refer-
ence count tracks the number of references to a particular open file. A file can be
open for reading or writing or both. The readable and writable fields track this.

All the open files in the system are kept in a global file table, the ftable. Like the
inode cache, the file table has a function to allocate a file (filealloc), create a dupli-
cate reference (filedup), release a reference (fileclose), and read and write data
(fileread and filewrite).

The first three follow the now-familiar form. Filealloc (4921) scans the file table
for an unreferenced file (f->ref == 0) and returns a new reference; filedup (4939) in-
crements the reference count; and fileclose (4952) decrements it. When a file’s refer-
ence count reaches zero, fileclose releases the underlying pipe or inode, according to
the type.

Filestat, fileread, and filewrite implement the stat, read, and write op-
erations on files. Filestat (4976) is only allowed on inodes and calls stati. Fileread
and filewrite check that the operation is allowed by the open mode and then pass
the call through to either the pipe or inode implementation. If the file represents an
inode, fileread and filewrite use the i/o offset as the offset for the operation and
then advance it (5012-5013, 5032-5033). Pipes have no concept of offset. Remember from
Chapter 7 that the inode functions require the caller to handle locking (4979-4981, 5011-

5014, 5031-5034). The inode locking has the convenient side effect that the read and write
offsets are updated atomically, so that multiple writing to the same file simultaneously
cannot overwrite each other’s data, though their writes may end up interlaced.

1



Code: System calls

Chapter 3 introduced helper functions for implementing system calls: argint,
argstr, and argptr. The file system adds another: argfd (5063) interprets the nth ar-
gument as a file descriptor. It calls argint to fetch the integer fd and then checks
that fd is a valid file table index. Although argfd returns a reference to the file in
*pf, it does not increment the reference count: the caller shares the reference from
the file table. As we will see, this convention avoids reference count operations in
most system calls.

The function fdalloc (5082) helps manage the current process’s file table: it scans
the table for an open slot, and if it finds one, inserts f and returns the index of the
slot, which will serve as the file descriptor. It is up to the caller to manage the refer-
ence count.

Finally we are ready to implement system calls. The simplest is sys_dup (5101),
which makes use of both of these helpers. It calls argfd to obtain the file correspond-
ing to the system call argument and then calls fdalloc to assign it an additional file
descriptor. If both are successful, it calls filedup to adjust the reference count: fdal-

loc has created a new reference. Similarly, sys_close (5139) obtains a file, removes it
from the file table, and releases the reference.

Sys_read (5115) parses its arguments as a file descriptor, a pointer, and a size and
then calls fileread. Note that no reference count operations are necessary: sys_read
is piggybacking on the reference in the file table. The reference cannot disappear dur-
ing the sys_read because each process has its own file table, and it is impossible for
the process to call sys_close while it is in the middle of sys_read. Sys_write (5127)

is identical to sys_read except that it calls filewrite. Sys_fstat (5151) is very simi-
lar to the previous two.

Sys_link and sys_unlink edit directories, creating or removing references to in-
odes. They are another good example of the power of exposing the file system locking
to higher-level functions.

Sys_link (5163) begins by fetching its arguments, two strings old and new (5168).
Assuming old exists and is not a directory (5170-5176), sys_link increments its ip-

>nlink count—the number of directories in which it appears—and flushes the new
count to disk (5177-5178). Then sys_link calls nameiparent to find the parent directo-
ry and final path element of new (5181) and creates a new directory entry pointing at
old’s inode (5184). The new parent directory must exist and be on the same device as
the existing inode: inode numbers only have a unique meaning on a single disk. If an
error like this occurs, sys_link must go back and decrement ip->nlink.

Sys_link would have simpler control flow and error handling if it delayed the
increment of ip->nlink until it had successfully created the link, but doing this would
put the file system temporarily in an unsafe state. The low-level file system code in
Chapter 7 was careful not to write out pointers to disk blocks before writing the disk
blocks themselves, lest the machine crash with a file system with pointers to old
blocks. The same principle is being used here: to avoid dangling pointers, it is impor-
tant that the link count always be at least as large as the true number of links. If the

2



system crashed after sys_link creating the second link but before it incremented ip-

>nlink, then the file system would have an inode with two links but a link count set
to one. Removing one of the links would cause the inode to be reused even though
there was still a reference to it.

Sys_unlink (5251) is the opposite of sys_link: it removes the named path from
the file system. It calls nameiparent to find the parent directory, sys-

file.c:/nameiparent.path/, checks that the final element, name, exists in the direc-
tory (5270), clears the directory entry (5285), and then updates the link count (5293). As
was the case for sys_link, the order here is important: sys_unlink must update the
link count only after the directory entry has been removed. There are a few more
steps if the entry being removed is a directory: it must be empty (5278) and after it has
been removed, the parent directory’s link count must be decremented, to reflect that
the child’s .. entry is gone.

Sys_link creates a new name for an existing inode. Create (5301) creates a new
name for a new inode. It is a generalization of the three file creation system calls:
open with the O_CREATE flag makes a new ordinary file, mkdir makes a new directory
, and mkdev makes a new device file. Like sys_link, create starts by caling namei-

parent to get the inode of the parent directory. It then calls dirlookup to check
whether the name already exists (5311). If the name does exist, create’s behavior de-
pends on which system call it is being used for: open has different semantics from
mkdir and mkdev. If create is being used on behalf of open (type == T_FILE) and
the name that exists is itself a regular file, then open treats that as a success, so create

does too (5315). Otherwise, it is an error (5316-5317). If the name does not already exist,
create now allocates a new inode with ialloc (5320). If the new inode is a directory,
create initializes it with . and .. entries. Finally, now that the data is initialized
properly, create can link it into the parent directory (5333). Create, like sys_link,
holds two inode locks simultaneously: ip and dp. There is no possibility of deadlock
because the inode ip is freshly allocated: no other process in the system will hold ip’s
lock and then try to lock dp.

Using create, it is easy to implement sys_open, sys_mkdir, and sys_mknod.
Sys_open (5351) is the most complex, because creating a new file is only a small

part of what it can do. If open is passed the O_CREATE flag, it calls create (5361).
Otherwise, it calls namei (5364). Create returns a locked inode, but namei does not, so
sys_open must lock the inode itself. This provides a convenient place to check that
directories are only opened for reading, not writing. Assuming the inode was obtained
one way or the other, sys_open allocates a file and a file descriptor (5373) and then fills
in the file (5381-5385). Since we have been so careful to initialize data structures before
creating pointers to them, this sequence should feel wrong, but it is safe: no other
process can access the partially initialized file since it is only in the current process’s
table, and these data structures are in memory, not on disk, so they don’t persist across
a machine crash.

Sys_mkdir (5390) and sys_mknod (5401) are trivial: they parse their arguments, call
create, and release the inode it returns.

Sys_chdir (5418) changes the current directory, which is stored as cp->cwd rather
than in the file table. It evaluates the new path, checks that it is a directory, releases

3



the old cp->cwd, and saves the new one in its place.
Chapter 5 examined the implementation of pipes before we even had a file sys-

tem. Sys_pipe connects that implementation to the file system by providing a way to
create a pipe pair. Its argument is a pointer to space for two integers, where it will
record the two new file descriptors. Then it allocates the pipe and installs the file de-
scriptors. Chapter 5 did not examine pipealloc (5621) and pipeclose (5661), but they
should be straightforward after walking through the examples above.

The final file system call is exec, which is the topic of the next chapter.

Real world

The file system interface in this chapter has proved remarkably durable: modern
systems such as BSD and Linux continue to be based on the same core system calls.
In those systems, multiple processes (sometimes called threads) can share a file de-
scriptor table. That introduces another level of locking and complicates the reference
counting here.

Xv6 has two different file implementations: pipes and inodes. Modern Unix sys-
tems have many: pipes, network connections, and inodes from many different types of
file systems, including network file systems. Instead of the if statements in fileread

and filewrite, these systems typically give each open file a table of function pointers,
one per operation, and call the function pointer to invoke that inode’s implementation
of the call. Network file systems and user-level file systems provide functions that turn
those calls into network RPCs and wait for the response before returning. Network
file systems are now an everyday occurrence, but networking in general is beyond the
scope of this book. On the other hand, the World Wide Web is in some ways a glob-
al-scale hierarchical file system.

Exercises

Exercise: why doesn’t filealloc panic when it runs out of files? Why is this more
common and therefore worth handling?

Exercise: suppose the file corresponding to ip gets unlinked by another process
between sys_link’s calls to iunlock(ip) and dirlink. Will the link be created cor-
rectly? Why or why not?

Exercise: create makes four function calls (one to ialloc and three to
dirlink) that it requires to succeed. If any doesn’t, create calls panic. Why is this
acceptable? Why can’t any of those four calls fail?

Exercise: sys_chdir calls iunlock(ip) before iput(cp->cwd), which might try
to lock cp->cwd, yet postponing iunlock(ip) until after the iput would not cause
deadlocks. Why not?

4


