
DRAFT as of February 19, 2011: Copyright 2009 Cox, Kaashoek, Morris

Chapter 1

Bootstrap

Hardware

A computer’s CPU (central processing unit, or processor) runs a conceptually sim-
ple loop: it inspects the value of a register called the program counter, reads a ma-
chine instruction from that address in memory, advances the program counter past the
instuction, and executes the instruction. Repeat. If the execution of the instruction
does not modify the program counter, this loop will interpret the memory pointed at
by the program counter as a sequence of machine instructions to run one after the
other. Instructions that do change the program counter implement conditional
branches, unconditional branches, and function calls.

The execution engine is useless without the ability to store and modify program
data. The fastest storage for data is provided by the processor’s register set. A register
is a storage cell inside the processor itself, capable of holding a machine word-sized
value (typically 16, 32, or 64 bits). Data stored in registers can typically be read or
written quickly, in a single CPU cycle. The x86 provides eight general purpose 32-bit
registers—%eax, %ebx, %ecx, %edx, %edi, %esi, %ebp, and %esp—and a program
counter %eip (the ‘‘instruction pointer’’). The common e prefix stands for extended, as
these are 32-bit extensions of the 16-bit registers %ax, %bx, %cx, %dx, %di, %si, %bp,
%sp, and %ip. The two register sets are aliased so that, for example, %ax is the bottom
half of %eax: writing to %ax changes the value stored in %eax and vice versa. The first
four registers also have names for the bottom two 8-bit bytes: %al and %ah denote the
low and high 8 bits of %ax; %bl, %bh, %cl, %ch, %dl, and %dh continue the pattern. In
addition to these registers, the x86 has eight 80-bit floating-point registers as well as a
handful of special-purpose registers like the control registers %cr0, %cr2, %cr3, and
%cr4; the debug registers %dr0, %dr1, %dr2, and %dr3; the segment registers %cs, %ds,
%es, %fs, %gs, and %ss; and the global and local descriptor table pseudo-registers
%gdtr and %ldtr. The control, segment selector, and descriptor table registers are im-
portant to any operating system, as we will see in this chapter. The floating-point and
debug registers are less interesting and not used by xv6.

Registers are fast but expensive. Most processors provide at most a few tens of
general-purpose registers. The next conceptual level of storage is the main random-ac-
cess memory (RAM). Main memory is 10-100x slower than a register, but it is much
cheaper, so there can be more of it. An x86 processor has a few dozen registers, but a
typical PC today has gigabytes of main memory. Because of the enormous differences
in both access speed and size between registers and main memory, most processors,

1

including the x86, store copies of recently-accessed sections of main memory in on-
chip cache memory. The cache memory serves as a middle ground between registers
and memory both in access time and in size. Today’s x86 processors typically have
two levels of cache, a small first-level cache with access times relatively close to the
processor’s clock rate and a larger second-level cache with access times in between the
first-level cache and main memory. This table shows actual numbers for an Intel Core
2 Duo system:

Intel Core 2 Duo E7200 at 2.53 GHz

TODO: Plug in non-made-up numbers!
storage access time size

register 0.6 ns 64 bytes
L1 cache 0.5 ns 64 kilobytes
L2 cache 10 ns 4 megabytes

main memory 100 ns 4 gigabytes

For the most part, x86 processors hide the cache from the operating system, so we
can think of the processor as having just two kinds of storage—registers and memo-
ry—and not worry about the distinctions between the different levels of the memory
hierarchy. The exceptions—the only reasons an x86 operating system needs to worry
about the memory cache—are concurrency (Chapter 4) and device drivers (Chapter 6).

One reason memory access is so much slower than register access is that the
memory is a set of chips physically separate from the processor chip. To allow the
processor to communicate with the memory, there is a collection of wires, called a bus,
running between the two. A simple mental model is that some of the wires, called
lines, carry address bits; some carry data bits. To read a value from main memory, the
processor sends high or low voltages representing 1 or 0 bits on the address lines and
a 1 on the ‘‘read’’ line for a prescribed amount of time and then reads back the value
by interpreting the voltages on the data lines. To write a value to main memory, the
processor sends appropriate bits on the address and data lines and a 1 on the ‘‘write’’
line for a prescribed amount of time. This model is an accurate description of the ear-
liest x86 chips, but it is a drastic oversimplification of a modern system. Even so,
thanks to the processor-centric view the operating system has of the rest of the com-
puter, this simple model suffices to understand a modern operating system. The de-
tails of modern I/O buses are the province of computer architecture textbooks.

Processors must communicate not just with memory but with hardware devices
too. The x86 processor provides special in and out instructions that read and write
values from device addresses called I/O ports. The hardware implementation of these
instructions is essentially the same as reading and writing memory. Early x86 proces-
sors had an extra address line: 0 meant read/write from an I/O port and 1 meant
read/write from main memory. Each hardware device monitors these lines for reads
and writes to its assigned range of I/O ports. A device’s ports let the software config-
ure the device, examine its status, and cause the device to take actions; for example,
software can use I/O port reads and writes to cause the disk interface hardware to
read and write sectors on the disk.

2

Many computer architectures have no separate device access instructions. Instead
the devices have fixed memory addresses and the processor communicates with the
device (at the operating system’s behest) by reading and writing values at those ad-
dresses. In fact, modern x86 architectures use this technique, called memory-mapped
I/O, for most high-speed devices such as network, disk, and graphics controllers. For
reasons of backwards compatibility, though, the old in and out instructions linger, as
do legacy hardware devices that use them, such as the IDE disk controller, which we
will see shortly.

Bootstrap

When an x86 PC boots, it starts executing a program called the BIOS, which is
stored in flash memory on the motherboard. The BIOS’s job is to prepare the hard-
ware and then transfer control to the operating system. Specifically, it transfers control
to code loaded from the boot sector, the first 512-byte sector of the boot disk. The
BIOS loads a copy of that sector into memory at 0x7c00 and then jumps (sets the
processor’s %ip) to that address. When the boot sector begins executing, the processor
is simulating an Intel 8088, the CPU chip in the original IBM PC released in 1981.
The xv6 boot sector’s job is to put the processor in a more modern operating mode, to
load the xv6 kernel from disk into memory, and then to transfer control to the kernel.
In xv6, the boot sector comprises two source files, one written in a combination of
16-bit and 32-bit x86 assembly (bootasm.S; (1000)) and one written in C (bootmain.c;
(1200)). This chapter examines the operation of the xv6 boot sector, from the time the
BIOS starts it to the time it transfers control to the kernel proper. The boot sector is a
microcosm of the kernel itself: it contains low-level assembly and C code, it manages
its own memory, and it even has a device driver, all in under 512 bytes of machine
code.

Code: Assembly bootstrap

The first instruction in the boot sector is cli (1015), which disables processor in-
terrupts. Interrupts are a way for hardware devices to invoke operating system func-
tions called interrupt handlers. The BIOS is a tiny operating system, and it might have
set up its own interrupt handlers as part of the initializing the hardware. But the
BIOS isn’t running anymore—xv6 is, or will be—so it is no longer appropriate or safe
to handle interrupts from hardware devices. When xv6 is ready (in Chapter 3), it will
re-enable interrupts.

The processor is in "real mode," in which it simulates an Intel 8088. In real mode
there are eight 16-bit general-purpose registers, but the processor sends 20 bits of ad-
dress to memory. The segment registers %cs, %ds, %es, and %ss provide the additional
bits necessary to generate 20-bit memory addresses from 16-bit registers. When a pro-
gram refers to a memory address, the processor automatically adds 16 times the value
of one of the segment registers; these registers are 16 bits wide. Which segment regis-
ter is usually implicit in the kind of memory reference: instruction fetches use %cs,

3

data reads and writes use %ds, and stack reads and writes use %ss. We’ll call the ad-
dresses the processor chip sends to memory "physical addresses," and the addresses
that programs directly manipulate "virtual addresses." People often write a full real-
mode virtual memory reference as segment:offset, indicating the value of the relevant
segment register and the address supplied by the program.

The BIOS does not guarantee anything about the contents of %ds, %es, %ss, so
first order of business after disabling interrupts is to set %ax to zero and then copy
that zero into %ds, %es, and %ss (1018-1021).

A virtual segment:offset can yield a 21-bit physical address, but the Intel 8088
could only address 20 bits of memory, so it discarded the top bit: 0xffff0+0xffff =
0x10ffef, but virtual address 0xffff:0xffff on the 8088 referred to physical address
0x0ffef. Some early software relied on the hardware ignoring the 21st address bit, so
when Intel introduced processors with more than 20 bits of physical address, IBM pro-
vided a compatibility hack that is a requirement for PC-compatible hardware. If the
second bit of the keyboard controller’s output port is low, the 21st physical address bit
is always cleared; if high, the 21st bit acts normally. The boot sector must enable the
21st address bit using I/O to the keyboard controller on ports 0x64 and 0x60 (1023-

1039).
Real mode’s 16-bit general-purpose and segment registers make it awkward for a

program to use more than 65,536 bytes of memory, and impossible to use more than a
megabyte. Modern x86 processors have a "protected mode" which allows physical ad-
dresses to have many more bits, and a "32-bit" mode that causes registers, virtual ad-
dresses, and most integer arithmetic to be carried out with 32 bits rather than 16. The
xv6 boot sequence enables both modes as follows.

In protected mode, a segment register is an index into a segment descriptor table.
Each table entry specifies a base physical address, a maximum virtual address called
the limit, and permission bits for the segment. These permissions are the protection in
protected mode: they can be used to make sure that one program cannot access mem-
ory belonging to another program.

xv6 makes almost no use of segments (it uses the paging hardware instead, as the
next chapter describes). The boot code sets up the segment descriptor table gdt (1082-

1085) so that all segments have a base address of zero and the maximum possible limit
(four gigabytes). The table has a null entry, one entry for executable code, and one en-
try to data. The code segment descriptor has a flag set that indicates that the code
should run in 32-bit mode. The boot code executes an lgdt instruction (1044) to set
the processor’s global descriptor table (GDT) register with the value gdtdesc (1087-1089),
which in turns points at the table gdt.

Once it has loaded the GDT register, the boot sector enables protected mode by
setting the 1 bit (CR0_PE) in register %cr0 (1045-1047). Enabling protected mode does
not immediately change how the processor translates virtual to physical addresses or
whether it is in 32-bit mode; it is only when one loads a new value into a segment
register that the processor reads the GDT and changes its internal segmentation set-
tings. Thus the processor continues to execute in 16-bit mode with the same segment
translations as before. The switch to 32-bit mode happens when the code executes a
far jump (ljmp) instruction (1053). The jump continues execution at the next line (1056)

4

but in doing so sets %cs to refer to the code descriptor entry in gdt. The entry de-
scribes a 32-bit code segment, so the processor switches into 32-bit mode. The boot
sector code has nursed the processor through an evolution from 8088 through 80286
to 80386.

The boot sector’s first action in 32-bit mode is to initialize the data segment regis-
ters with SEG_KDATA (1058-1061). Virtual address now map directly to physical addresses.
The only step left before executing C code is to set up a stack in an unused region of
memory. The memory from 0xa0000 to 0x100000 is typically littered with device
memory regions, and the xv6 kernel expects to be placed at 0x100000. The boot sec-
tor itself is at 0x7c00 through 0x7d00. Essentially any other section of memory would
be a fine location for the stack. The boot sector chooses 0x7c00 (known in this file as
$start) as the top of the stack; the stack will grow down from there, toward 0x0000,
away from the boot sector code.

Finally the boot sector calls the C function bootmain (1068). Bootmain’s job is to
load and run the kernel. It only returns if something has gone wrong. In that case,
the code sends a few output words on port 0x8a00 (1070-1076). On real hardware, there
is no device connected to that port, so this code does nothing. If the boot sector is
running inside the PC simulator Bochs, port 0x8a00 is connected to Bochs itself; the
code sequence triggers a Bochs debugger breakpoint. Bochs or not, the code then exe-
cutes an infinite loop (1077-1078). A real boot sector might attempt to print an error
message first.

Code: C bootstrap

The C part of the boot sector, bootmain.c (1200), loads a kernel from an IDE disk
into memory and then starts executing it. The kernel is an ELF format binary, defined
in elf.h. An ELF binary is an ELF file header, struct elfhdr (0955), followed by a se-
quence of program section headers, struct proghdr (0974). Each proghdr describes a
section of the kernel that must be loaded into memory. These headers typically take
up the first hundred or so bytes of the binary. To get access to the headers, bootmain
loads the first 4096 bytes of the file, a gross overestimation of the amount needed
(1213). It places the in-memory copy at address 0x10000, another out-of-the-way mem-
ory address.

bootmain casts freely between pointers and integers (1223, 1226, and so on). Program-
ming languages distinguish the two to catch errors, but the underlying processor sees
no difference. An operating system must work at the processor’s level; occasionally it
will need to treat a pointer as an integer or vice versa. C allows these conversions, in
contrast to languages like Pascal and Java, precisely because one of the first uses of C
was to write an operating system: Unix.

Back in the boot sector, what should be an ELF binary header has been loaded
into memory at address 0x10000 (1213). The next step is to check that the first four
bytes of the header, the so-called magic number, are the bytes 0x7F, ’E’, ’L’, ’F’, or
ELF_MAGIC (0952). All ELF binary headers are required to begin with this magic num-
ber as identication. If the ELF header has the right magic number, the boot sector as-
sumes that the binary is well-formed. There are many other sanity checks that a prop-

5

er ELF loader would do, as we will see in Chapter 9, but the boot sector doesn’t have
the code space. Checking the magic number guards against simply forgetting to write
a kernel to the disk, not against malicious binaries.

An ELF header points at a small number of program headers (proghdrs) describ-
ing the sections that make up the running kernel image. Each proghdr gives a virtual
address (va), the location where the section’s content lies on the disk relative to the
start of the ELF header (offset), the number of bytes to load from the file (filesz),
and the number of bytes to allocate in memory (memsz). If memsz is larger than
filesz, the bytes not loaded from the file are to be zeroed. This is more efficient,
both in space and I/O, than storing the zeroed bytes directly in the binary. As an ex-
ample, the xv6 kernel has two loadable program sections, code and data:

objdump -p kernel

kernel: file format elf32-i386

Program Header:

LOAD off 0x00001000 vaddr 0x00100000 paddr 0x00100000 align 2**12

filesz 0x000063ca memsz 0x000063ca flags r-x

LOAD off 0x000073e0 vaddr 0x001073e0 paddr 0x001073e0 align 2**12

filesz 0x0000079e memsz 0x000067e4 flags rw-

STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**2

filesz 0x00000000 memsz 0x00000000 flags rwx

Notice that the second section, the data section, has a memsz larger than its filesz:
the first 0x79e bytes are loaded from the kernel binary and the remaining 0x6046

bytes are zeroed.
Bootmain uses the addresses in the proghdr to direct the loading of the kernel.

It reads each section’s content starting from the disk location offset bytes after the
start of the ELF header, and writes to memory starting at address va. Bootmain calls
readseg to load data from disk (1237) and calls stosb to zero the remainder of the
segment (1239). Stosb (0442) uses the x86 instruction rep stosb to initialize every byte
of a block of memory.

Readseg (1279) reads at least count bytes from the disk offset into memory at
va. The x86 IDE disk interface operates in terms of 512-byte chunks called sectors, so
readseg may read not only the desired section of memory but also some bytes before
and after, depending on alignment. For the second program segment in the example
above, the boot sector will call readseg((uchar*)0x1073e0, 0x73e0, 0x79e). Due
to sector granularity, this call is equivalent to readseg((uchar*)0x107200, 0x7200,

0xa00): it reads 0x1e0 bytes before the desired memory region and 0x82 bytes after-
ward. In practice, this sloppy behavior turns out not to be a problem (see exercise
XXX). Readseg begins by computing the ending virtual address, the first memory ad-
dress above va that doesn’t need to be loaded from disk (1283), and rounding va down
to a sector-aligned disk offset . Then it converts the offset from a byte offset to a sec-
tor offset; it adds 1 because the kernel starts at disk sector 1 (disk sector 0 is the boot
sector). Finally, it calls readsect to read each sector into memory.

Readsect (1260) reads a single disk sector. It is our first example of a device driv-
er, albeit a tiny one. Readsect begins by calling waitdisk to wait until the disk sig-

6

nals that it is ready to accept a command. The disk does so by setting the top two bits
of its status byte (connected to input port 0x1f7) to 01. Waitdisk (1251) reads the sta-
tus byte until the bits are set that way. Chapter 6 will examine more efficient ways to
wait for hardware status changes, but busy waiting like this (also called polling) is fine
for the boot sector.

Once the disk is ready, readsect issues a read command. It first writes com-
mand arguments—the sector count and the sector number (offset)—to the disk regis-
ters on output ports 0x1f2-0x1f6 (1264-1268). The bits 0xe0 in the write to port 0x1f6
signal to the disk that 0x1f3-0x1f6 contain a sector number (a so-called linear block
address), in contrast to a more complicated cylinder/head/sector address used in early
PC disks. After writing the arguments, readsect writes to the command register to
trigger the read (1254). The command 0x20 is ‘‘read sectors.’’ Now the disk will read
the data stored in the specified sectors and make it available in 32-bit pieces on input
port 0x1f0. Waitdisk (1251) waits until the disk signals that the data is ready, and then
the call to insl reads the 128 (SECTSIZE/4) 32-bit pieces into memory starting at dst
(1273).

Inb, outb, and insl are not ordinary C functions. They are inlined functions
whose bodies are assembly language fragments (0403, 0421, 0412). When gcc sees the call
to inb (1254), the inlined assembly causes it to emit a single inb instruction. This style
allows the use of low-level instructions like inb and outb while still writing the con-
trol logic in C instead of assembly.

The implementation of insl (0412) is worth looking at more closely. Rep insl is
actually a tight loop masquerading as a single instruction. The rep prefix executes the
following instruction %ecx times, decrementing %ecx after each iteration. The insl

instruction reads a 32-bit value from port %dx into memory at address %edi and then
increments %edi by 4. Thus rep insl copies 4×%ecx bytes, in 32-bit chunks, from
port %dx into memory starting at address %edi. The register annotations tell GCC to
prepare for the assembly sequence by storing dst in %edi, cnt in %ecx, and port in
%dx. Thus the insl function copies 4×cnt bytes from the 32-bit port port into mem-
ory starting at dst. The cld instruction clears the processor’s direction flag, so that the
insl instruction increments %edi; when the flag is set, insl decrements %edi instead.
The x86 calling convention does not define the state of the direction flag on entry to a
function, so each use of an instruction like insl must initialize it to the desired value.

The boot loader is almost done. Bootmain loops calling readseg, which loops
calling readsect (1235-1240). At the end of the loop, bootmain has loaded the kernel
into memory. Now it is time to run the kernel. The ELF header specifies the kernel
entry point, the %eip where the kernel expects to be started (just as the boot loader
expected to be started at 0x7c00). Bootmain casts the entry point integer to a function
pointer and calls that function, essentially jumping to the kernel’s entry point (1244-1245).
The kernel should not return, but if it does, bootmain will return, and then
bootasm.S will attempt a Bochs breakpoint and then loop forever.

Where is the kernel in memory? Bootmain does not directly decide; it just fol-
lows the directions in the ELF headers. The "linker" creates the ELF headers, and the
xv6 Makefile that calls the linker tells it that the kernel should start at 0x100000.

Assuming all has gone well, the kernel entry pointer will refer to the kernel’s main

7

function (see main.c). The next chapter continues there.

Real world

The boot sector described in this chapter compiles to around 470 bytes of ma-
chine code, depending on the optimizations used when compiling the C code. In or-
der to fit in that small amount of space, the xv6 boot sector makes a major simplifying
assumption, that the kernel has been written to the boot disk contiguously starting at
sector 1. More commonly, kernels are stored in ordinary file systems, where they may
not be contiguous, or are loaded over a network. These complications require the boot
loader to be able to drive a variety of disk and network controllers and understand
various file systems and network protocols. In other words, the boot loader itself must
be a small operating system. Since such complicated boot loaders certainly won’t fit in
512 bytes, most PC operating systems use a two-step boot process. First, a simple boot
sector like the one in this chapter loads a full-featured boot-loader from a known disk
location, often relying on the less space-constrained BIOS for disk access rather than
trying to drive the disk itself. Then the full loader, relieved of the 512-byte limit, can
implement the complexity needed to locate, load, and execute the desired kernel.

TODO: Also, x86 does not imply BIOS: Macs use EFI. I wonder if the Mac has
an A20 line.

Exercises

1. Look at the kernel load addresses; why doesn’t the sloppy readsect cause problems?
2. something about BIOS lasting longer + security problems
3. Suppose you wanted bootmain() to load the kernel at 0x200000 instead of
0x100000, and you did so by modifying bootmain() to add 0x100000 to the va of each
ELF section. Something would go wrong. What?

8

