/* * physical memory allocator, intended to be used to allocate * memory for user processes. allocates in 4096-byte "pages". * free list is sorted and combines adjacent pages into * long runs, to make it easier to allocate big segments. * one reason the page size is 4k is that the x86 segment size * granularity is 4k. */ #include "param.h" #include "types.h" #include "defs.h" struct run { struct run *next; int len; // bytes }; struct run *freelist; void ktest(); /* * initialize free list of physical pages. this code * cheats by just considering the one megabyte of pages * after _end. */ void kinit() { extern int end; unsigned mem; char *start; start = (char *) &end; start = (char *) (((unsigned)start + PAGE) & ~(PAGE-1)); mem = 256; // XXX cprintf("mem = %d\n", mem * PAGE); kfree(start, mem * PAGE); ktest(); } void kfree(char *cp, int len) { struct run **rr; struct run *p = (struct run *) cp; struct run *pend = (struct run *) (cp + len); int i; if(len % PAGE) panic("kfree"); // XXX fill with junk to help debug for(i = 0; i < len; i++) cp[i] = 1; rr = &freelist; while(*rr){ struct run *rend = (struct run *) ((char *)(*rr) + (*rr)->len); if(p >= *rr && p < rend) panic("freeing free page"); if(pend == *rr){ p->len = len + (*rr)->len; p->next = (*rr)->next; *rr = p; return; } if(pend < *rr){ p->len = len; p->next = *rr; *rr = p; return; } if(p == rend){ (*rr)->len += len; if((*rr)->next && (*rr)->next == pend){ (*rr)->len += (*rr)->next->len; (*rr)->next = (*rr)->next->next; } return; } rr = &((*rr)->next); } p->len = len; p->next = 0; *rr = p; } /* * allocate n bytes of physical memory. * returns a kernel-segment pointer. * returns 0 if there's no run that's big enough. */ char * kalloc(int n) { struct run **rr; if(n % PAGE) panic("kalloc"); rr = &freelist; while(*rr){ struct run *r = *rr; if(r->len == n){ *rr = r->next; return (char *) r; } if(r->len > n){ char *p = (char *)r + (r->len - n); r->len -= n; return p; } rr = &(*rr)->next; } return 0; } void ktest() { char *p1, *p2, *p3; // test coalescing p1 = kalloc(4 * PAGE); kfree(p1 + 3*PAGE, PAGE); kfree(p1 + 2*PAGE, PAGE); kfree(p1, PAGE); kfree(p1 + PAGE, PAGE); p2 = kalloc(4 * PAGE); if(p2 != p1) panic("ktest"); kfree(p2, 4 * PAGE); // test finding first run that fits p1 = kalloc(1 * PAGE); p2 = kalloc(1 * PAGE); kfree(p1, PAGE); p3 = kalloc(2 * PAGE); kfree(p2, PAGE); kfree(p3, 2 * PAGE); // test running out of memory p1 = 0; while(1){ p2 = kalloc(PAGE); if(p2 == 0) break; *(char **)p2 = p1; p1 = p2; } while(p1){ p2 = *(char **)p1; kfree(p1, PAGE); p1 = p2; } p1 = kalloc(PAGE * 20); if(p1 == 0) panic("ktest2"); kfree(p1, PAGE * 20); }