#include "param.h" #include "types.h" #include "defs.h" #include "x86.h" #include "memlayout.h" #include "mmu.h" #include "proc.h" #include "elf.h" extern char data[]; // defined in data.S static pde_t *kpgdir; // for use in scheduler() struct segdesc gdt[NSEGS]; // page map for during boot // XXX build a static page table in assembly static void pgmap(void *va, void *last, uint pa) { pde_t *pde; pte_t *pgtab; pte_t *pte; for(;;){ pde = &kpgdir[PDX(va)]; pde_t pdev = *pde; if (pdev == 0) { pgtab = (pte_t *) pgalloc(); *pde = v2p(pgtab) | PTE_P | PTE_W; } else { pgtab = (pte_t*)p2v(PTE_ADDR(pdev)); } pte = &pgtab[PTX(va)]; *pte = pa | PTE_W | PTE_P; if(va == last) break; va += PGSIZE; pa += PGSIZE; } } // set up a page table to get off the ground void pginit(char* (*alloc)(void)) { uint cr0; kpgdir = (pde_t *) alloc(); pgmap((void *) 0, (void *) PHYSTOP, 0); // map pa 0 at va 0 pgmap((void *) KERNBASE, (void *) (KERNBASE+PHYSTOP), 0); // map pa 0 at va KERNBASE pgmap((void*)0xFE000000, 0, 0xFE000000); switchkvm(); // load kpgdir into cr3 cr0 = rcr0(); cr0 |= CR0_PG; lcr0(cr0); // paging on // new gdt gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0); gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); lgdt((void *)v2p(gdt), sizeof(gdt)); loadgs(SEG_KDATA << 3); loadfs(SEG_KDATA << 3); loades(SEG_KDATA << 3); loadds(SEG_KDATA << 3); loadss(SEG_KDATA << 3); __asm volatile("ljmp %0,$1f\n 1:\n" :: "i" (SEG_KCODE << 3)); // reload cs } // Set up CPU's kernel segment descriptors. // Run once at boot time on each CPU. void seginit(void) { struct cpu *c; // Map virtual addresses to linear addresses using identity map. // Cannot share a CODE descriptor for both kernel and user // because it would have to have DPL_USR, but the CPU forbids // an interrupt from CPL=0 to DPL=3. c = &cpus[cpunum()]; c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0); c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER); c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER); // Map cpu, and curproc c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0); lgdt(c->gdt, sizeof(c->gdt)); loadgs(SEG_KCPU << 3); // Initialize cpu-local storage. cpu = c; proc = 0; } // Return the address of the PTE in page table pgdir // that corresponds to linear address va. If create!=0, // create any required page table pages. static pte_t * walkpgdir(pde_t *pgdir, const void *va, int create) { pde_t *pde; pte_t *pgtab; pde = &pgdir[PDX(va)]; if(*pde & PTE_P){ pgtab = (pte_t*)p2v(PTE_ADDR(*pde)); } else { if(!create || (pgtab = (pte_t*)kalloc()) == 0) return 0; // Make sure all those PTE_P bits are zero. memset(pgtab, 0, PGSIZE); // The permissions here are overly generous, but they can // be further restricted by the permissions in the page table // entries, if necessary. *pde = v2p(pgtab) | PTE_P | PTE_W | PTE_U; } return &pgtab[PTX(va)]; } // Create PTEs for linear addresses starting at la that refer to // physical addresses starting at pa. la and size might not // be page-aligned. static int mappages(pde_t *pgdir, void *la, uint size, uint pa, int perm) { char *a, *last; pte_t *pte; a = PGROUNDDOWN(la); last = PGROUNDDOWN(la + size - 1); for(;;){ pte = walkpgdir(pgdir, a, 1); if(pte == 0) return -1; if(*pte & PTE_P) panic("remap"); *pte = pa | perm | PTE_P; if(a == last) break; a += PGSIZE; pa += PGSIZE; } return 0; } // The mappings from logical to linear are one to one (i.e., // segmentation doesn't do anything). // There is one page table per process, plus one that's used // when a CPU is not running any process (kpgdir). // A user process uses the same page table as the kernel; the // page protection bits prevent it from using anything other // than its memory. // // // setupkvm() and exec() set up every page table like this: // 0..KERNBASE : user memory (text, data, stack, heap), mapped to some phys mem // KERNBASE+640K..KERNBASE+1M: mapped to 640K..1M // KERNBASE+1M..KERNBASE+end : mapped to 1M..end // KERNBASE+end..KERBASE+PHYSTOP : mapped to end..PHYSTOP (free memory) // 0xfe000000..0 : mapped direct (devices such as ioapic) // // The kernel allocates memory for its heap and for user memory // between kernend and the end of physical memory (PHYSTOP). // The virtual address space of each user program includes the kernel // (which is inaccessible in user mode). The user program sits in // the bottom of the address space, and the kernel at the top at KERNBASE. static struct kmap { void *l; uint p; uint e; int perm; } kmap[] = { { (void *)IOSPACEB, IOSPACEB, IOSPACEE, PTE_W}, // I/O space { P2V(IOSPACEB), IOSPACEB, IOSPACEE, PTE_W}, // I/O space { (void *)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kernel text, rodata { data, V2P(data), PHYSTOP, PTE_W}, // kernel data, memory { (void*)0xFE000000, 0xFE000000, 0, PTE_W}, // device mappings }; // Set up kernel part of a page table. pde_t* setupkvm(void) { pde_t *pgdir; struct kmap *k; if((pgdir = (pde_t*)kalloc()) == 0) return 0; memset(pgdir, 0, PGSIZE); k = kmap; for(k = kmap; k < &kmap[NELEM(kmap)]; k++) if(mappages(pgdir, k->l, k->e - k->p, (uint)k->p, k->perm) < 0) return 0; return pgdir; } // Allocate one page table for the machine for the kernel address // space for scheduler processes. void kvmalloc(void) { kpgdir = setupkvm(); switchkvm(); } // Turn on paging. void vmenable(void) { uint cr0; switchkvm(); // load kpgdir into cr3 cr0 = rcr0(); cr0 |= CR0_PG; lcr0(cr0); struct cpu *c = &cpus[0]; lgdt((void *)v2p((void *)(c->gdt)), sizeof(c->gdt)); loadgs(SEG_KCPU << 3); loadfs(SEG_KDATA << 3); loades(SEG_KDATA << 3); loadds(SEG_KDATA << 3); loadss(SEG_KDATA << 3); __asm volatile("ljmp %0,$1f\n 1:\n" :: "i" (SEG_KCODE << 3)); // reload cs } // Switch h/w page table register to the kernel-only page table, // for when no process is running. void switchkvm(void) { lcr3(v2p(kpgdir)); // switch to the kernel page table } // Switch TSS and h/w page table to correspond to process p. void switchuvm(struct proc *p) { pushcli(); cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0); cpu->gdt[SEG_TSS].s = 0; cpu->ts.ss0 = SEG_KDATA << 3; cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE; ltr(SEG_TSS << 3); if(p->pgdir == 0) panic("switchuvm: no pgdir"); lcr3(v2p(p->pgdir)); // switch to new address space popcli(); } // Load the initcode into address 0 of pgdir. // sz must be less than a page. void inituvm(pde_t *pgdir, char *init, uint sz) { char *mem; if(sz >= PGSIZE) panic("inituvm: more than a page"); mem = kalloc(); memset(mem, 0, PGSIZE); mappages(pgdir, 0, PGSIZE, v2p(mem), PTE_W|PTE_U); memmove(mem, init, sz); } // Load a program segment into pgdir. addr must be page-aligned // and the pages from addr to addr+sz must already be mapped. int loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz) { uint i, pa, n; pte_t *pte; if((uint)addr % PGSIZE != 0) panic("loaduvm: addr must be page aligned"); for(i = 0; i < sz; i += PGSIZE){ if((pte = walkpgdir(pgdir, addr+i, 0)) == 0) panic("loaduvm: address should exist"); pa = PTE_ADDR(*pte); if(sz - i < PGSIZE) n = sz - i; else n = PGSIZE; if(readi(ip, (char*)pa, offset+i, n) != n) return -1; } return 0; } // Allocate page tables and physical memory to grow process from oldsz to // newsz, which need not be page aligned. Returns new size or 0 on error. int allocuvm(pde_t *pgdir, uint oldsz, uint newsz) { char *mem; uint a; if(newsz > USERTOP) return 0; if(newsz < oldsz) return oldsz; a = PGROUNDUP(oldsz); for(; a < newsz; a += PGSIZE){ mem = kalloc(); if(mem == 0){ cprintf("allocuvm out of memory\n"); deallocuvm(pgdir, newsz, oldsz); return 0; } memset(mem, 0, PGSIZE); mappages(pgdir, (char*)a, PGSIZE, v2p(mem), PTE_W|PTE_U); } return newsz; } // Deallocate user pages to bring the process size from oldsz to // newsz. oldsz and newsz need not be page-aligned, nor does newsz // need to be less than oldsz. oldsz can be larger than the actual // process size. Returns the new process size. int deallocuvm(pde_t *pgdir, uint oldsz, uint newsz) { pte_t *pte; uint a, pa; if(newsz >= oldsz) return oldsz; a = PGROUNDUP(newsz); for(; a < oldsz; a += PGSIZE){ pte = walkpgdir(pgdir, (char*)a, 0); if(pte && (*pte & PTE_P) != 0){ pa = PTE_ADDR(*pte); if(pa == 0) panic("kfree"); kfree((char*)pa); *pte = 0; } } return newsz; } // Free a page table and all the physical memory pages // in the user part. void freevm(pde_t *pgdir) { uint i; if(pgdir == 0) panic("freevm: no pgdir"); deallocuvm(pgdir, USERTOP, 0); for(i = 0; i < NPDENTRIES; i++){ if(pgdir[i] & PTE_P) kfree(p2v(PTE_ADDR(pgdir[i]))); } kfree((char*)pgdir); } // Given a parent process's page table, create a copy // of it for a child. pde_t* copyuvm(pde_t *pgdir, uint sz) { pde_t *d; pte_t *pte; uint pa, i; char *mem; if((d = setupkvm()) == 0) return 0; for(i = 0; i < sz; i += PGSIZE){ if((pte = walkpgdir(pgdir, (void*)i, 0)) == 0) panic("copyuvm: pte should exist"); if(!(*pte & PTE_P)) panic("copyuvm: page not present"); pa = PTE_ADDR(*pte); if((mem = kalloc()) == 0) goto bad; memmove(mem, (char*)pa, PGSIZE); if(mappages(d, (void*)i, PGSIZE, v2p(mem), PTE_W|PTE_U) < 0) goto bad; } return d; bad: freevm(d); return 0; } //PAGEBREAK! // Map user virtual address to kernel physical address. char* uva2ka(pde_t *pgdir, char *uva) { pte_t *pte; pte = walkpgdir(pgdir, uva, 0); if((*pte & PTE_P) == 0) return 0; if((*pte & PTE_U) == 0) return 0; return (char*)PTE_ADDR(*pte); } // Copy len bytes from p to user address va in page table pgdir. // Most useful when pgdir is not the current page table. // uva2ka ensures this only works for PTE_U pages. int copyout(pde_t *pgdir, uint va, void *p, uint len) { char *buf, *pa0; uint n, va0; buf = (char*)p; while(len > 0){ va0 = (uint)PGROUNDDOWN(va); pa0 = uva2ka(pgdir, (char*)va0); if(pa0 == 0) return -1; n = PGSIZE - (va - va0); if(n > len) n = len; memmove(pa0 + (va - va0), buf, n); len -= n; buf += n; va = va0 + PGSIZE; } return 0; }