
OS abstractions

2/25/08
Frans Kaashoek

MIT
kaashoek@mit.edu

Why a code-based OS class?

•  Operating systems can be misleadingly simple
–  Clean simple abstractions, easily understandable in

isolation
–  Complexity is in how their implementations interact

•  Learn by doing, focus on interactions
–  How do hardware interrupts interact with kernel and

user-level processes?
–  How to use locks to coordinate different activities?

•  This lecture: OS abstractions
–  Illustrated by an shell implementation

sh: shell

•  Interactive command interpreter
•  Interface (“the shell”) to the operating system
•  Examples of shell commands:

–  $ ls # create process
–  $ ls > tmp1 # write output to file
–  $ sh < script > tmp1 # run sh script
–  $ sort tmp | uniq | wc # process communicate with pipe
–  $ compute-pi & # run program in background
–  $ ….

OS ideas: isolation, concurrency, communication, synchronization

shell implementation
 while (1) {

 printf(“$”);
 readcommand(command, args);

 pid = fork(); // new process; concurrency
 if (pid == 0) { // child?
 exec (command, args, 0); // run command
 } else if (pid > 0) { // parent?
 r = wait (0); // wait until child is done
 } else {
 perror(“Failed to fork\n”);
 }

}

Input/Output (I/O)

•  I/O through file descriptors
–  File descriptor may be for a file, terminal, …

•  Example calls;
–  read(fd, buf, sizeof(buf));
–  write(fd, buf, sizeof(buf));

•  Convention:
–  0: input
–  1: output
–  2: error

•  Child inherits open file descriptors from parents

I/O redirection

•  Example: “ls > tmp1”
•  Modify sh to insert before exec:

close(1); // release fd 1
fd = create(“tmp1”, 0666); // fd will be 1

•  No modifications to “ls”!
•  “ls” could be writing to file, terminal, etc., but

programmer of “ls” doesn’t need to know

Pipe: one-way communication
int fdarray[2];
char buf[512];
int n;

pipe(fdarray); // returns 2 fd’s
write(fdarray[1], “hello”, 5);
read(fdarray[0], buf, sizeof(buf));

•  buf contains ‘h’, ‘e’, ‘l’, ‘l’, ‘o’

Pipe between parent & child
int fdarray[2];
char buf[512];
int n, pid;

pipe(fdarray);
pid = fork();
if(pid > 0) {
 write(fdarray[1], "hello", 5);
} else {
 n = read(fdarray[0], buf, sizeof(buf));
}

•  Synchronization between parent and child
–  read blocks until there is data

•  How does the shell implement “a | b”?

Implementing shell pipelines
int fdarray[2];
if (pipe(fdarray) < 0) panic ("error");
if ((pid = fork ()) == 0) { // child (left end of pipe)
 close (1);
 tmp = dup (fdarray[1]); // fdarray[1] is the write end, tmp will be 1
 close (fdarray[0]); // close read end
 close (fdarray[1]); // close fdarray[1]
 exec (command1, args1, 0);
} else if (pid > 0) { // parent (right end of pipe)
 close (0);
 tmp = dup (fdarray[0]); // fdarray[0] is the read end, tmp will be 0
 close (fdarray[0]);
 close (fdarray[1]); // close write end
 exec (command2, args2, 0);
} else {
 printf ("Unable to fork\n");
 }

OS abstractions and ideas

•  Processes (fork & exec & wait)
•  Files (open, create, read, write, close)
•  File descriptor (dup, ..)
•  Communication (pipe)
•  Also a number of OS ideas:

–  Isolation between processes
–  Concurrency
–  Coordination/Synchronization

Your job: implement abstractions and
understand ideas

What will you know at the end?

•  Understand OS abstractions in detail
•  Intel x86
•  The PC platform
•  The C programming language
•  Unix abstractions
•  Experience with building system software

– Handle complexity, concurrency, etc.

Have fun!

