// File system implementation. Four layers: // + Blocks: allocator for raw disk blocks. // + Files: inode allocator, reading, writing, metadata. // + Directories: inode with special contents (list of other inodes!) // + Names: paths like /usr/rtm/xv6/fs.c for convenient naming. // // Disk layout is: superblock, inodes, block in-use bitmap, data blocks. // // This file contains the low-level file system manipulation // routines. The (higher-level) system call implementations // are in sysfile.c. #include "types.h" #include "defs.h" #include "param.h" #include "stat.h" #include "mmu.h" #include "proc.h" #include "spinlock.h" #include "buf.h" #include "fs.h" #include "file.h" #define min(a, b) ((a) < (b) ? (a) : (b)) static void itrunc(struct inode*); // Read the super block. void readsb(int dev, struct superblock *sb) { struct buf *bp; bp = bread(dev, 1); memmove(sb, bp->data, sizeof(*sb)); brelse(bp); } // Zero a block. static void bzero(int dev, int bno) { struct buf *bp; bp = bread(dev, bno); memset(bp->data, 0, BSIZE); log_write(bp); brelse(bp); } // Blocks. // Allocate a zeroed disk block. static uint balloc(uint dev) { int b, bi, m; struct buf *bp; struct superblock sb; bp = 0; readsb(dev, &sb); for(b = 0; b < sb.size; b += BPB){ bp = bread(dev, BBLOCK(b, sb.ninodes)); for(bi = 0; bi < BPB && bi < (sb.size - b); bi++){ m = 1 << (bi % 8); if((bp->data[bi/8] & m) == 0){ // Is block free? bp->data[bi/8] |= m; // Mark block in use on disk. log_write(bp); brelse(bp); bzero(dev, b + bi); return b + bi; } } brelse(bp); } panic("balloc: out of blocks"); } // Free a disk block. static void bfree(int dev, uint b) { struct buf *bp; struct superblock sb; int bi, m; readsb(dev, &sb); bp = bread(dev, BBLOCK(b, sb.ninodes)); bi = b % BPB; m = 1 << (bi % 8); if((bp->data[bi/8] & m) == 0) panic("freeing free block"); bp->data[bi/8] &= ~m; // Mark block free on disk. log_write(bp); brelse(bp); } // Inodes. // // An inode is a single, unnamed file in the file system. // The inode disk structure holds metadata (the type, device numbers, // and data size) along with a list of blocks where the associated // data can be found. // // The inodes are laid out sequentially on disk immediately after // the superblock. The kernel keeps a cache of the in-use // on-disk structures to provide a place for synchronizing access // to inodes shared between multiple processes. // // ip->ref counts the number of pointer references to this cached // inode; references are typically kept in struct file and in proc->cwd. // When ip->ref falls to zero, the inode is no longer cached. // It is an error to use an inode without holding a reference to it. // // Processes are only allowed to read and write inode // metadata and contents when holding the inode's lock, // represented by the I_BUSY flag in the in-memory copy. // Because inode locks are held during disk accesses, // they are implemented using a flag rather than with // spin locks. Callers are responsible for locking // inodes before passing them to routines in this file; leaving // this responsibility with the caller makes it possible for them // to create arbitrarily-sized atomic operations. // // To give maximum control over locking to the callers, // the routines in this file that return inode pointers // return pointers to *unlocked* inodes. It is the callers' // responsibility to lock them before using them. A non-zero // ip->ref keeps these unlocked inodes in the cache. struct { struct spinlock lock; struct inode inode[NINODE]; } icache; void iinit(void) { initlock(&icache.lock, "icache"); } static struct inode* iget(uint dev, uint inum); //PAGEBREAK! // Allocate a new inode with the given type on device dev. struct inode* ialloc(uint dev, short type) { int inum; struct buf *bp; struct dinode *dip; struct superblock sb; readsb(dev, &sb); for(inum = 1; inum < sb.ninodes; inum++){ // loop over inode blocks bp = bread(dev, IBLOCK(inum)); dip = (struct dinode*)bp->data + inum%IPB; if(dip->type == 0){ // a free inode memset(dip, 0, sizeof(*dip)); dip->type = type; log_write(bp); // mark it allocated on the disk brelse(bp); return iget(dev, inum); } brelse(bp); } panic("ialloc: no inodes"); } // Copy inode, which has changed, from memory to disk. void iupdate(struct inode *ip) { struct buf *bp; struct dinode *dip; bp = bread(ip->dev, IBLOCK(ip->inum)); dip = (struct dinode*)bp->data + ip->inum%IPB; dip->type = ip->type; dip->major = ip->major; dip->minor = ip->minor; dip->nlink = ip->nlink; dip->size = ip->size; memmove(dip->addrs, ip->addrs, sizeof(ip->addrs)); log_write(bp); brelse(bp); } // Find the inode with number inum on device dev // and return the in-memory copy. static struct inode* iget(uint dev, uint inum) { struct inode *ip, *empty; acquire(&icache.lock); // Try for cached inode. empty = 0; for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++){ if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){ ip->ref++; release(&icache.lock); return ip; } if(empty == 0 && ip->ref == 0) // Remember empty slot. empty = ip; } // Allocate fresh inode. if(empty == 0) panic("iget: no inodes"); ip = empty; ip->dev = dev; ip->inum = inum; ip->ref = 1; ip->flags = 0; release(&icache.lock); return ip; } // Increment reference count for ip. // Returns ip to enable ip = idup(ip1) idiom. struct inode* idup(struct inode *ip) { acquire(&icache.lock); ip->ref++; release(&icache.lock); return ip; } // Lock the given inode. void ilock(struct inode *ip) { struct buf *bp; struct dinode *dip; if(ip == 0 || ip->ref < 1) panic("ilock"); acquire(&icache.lock); while(ip->flags & I_BUSY) sleep(ip, &icache.lock); ip->flags |= I_BUSY; release(&icache.lock); if(!(ip->flags & I_VALID)){ bp = bread(ip->dev, IBLOCK(ip->inum)); dip = (struct dinode*)bp->data + ip->inum%IPB; ip->type = dip->type; ip->major = dip->major; ip->minor = dip->minor; ip->nlink = dip->nlink; ip->size = dip->size; memmove(ip->addrs, dip->addrs, sizeof(ip->addrs)); brelse(bp); ip->flags |= I_VALID; if(ip->type == 0) panic("ilock: no type"); } } // Unlock the given inode. void iunlock(struct inode *ip) { if(ip == 0 || !(ip->flags & I_BUSY) || ip->ref < 1) panic("iunlock"); acquire(&icache.lock); ip->flags &= ~I_BUSY; wakeup(ip); release(&icache.lock); } // Caller holds reference to unlocked ip. Drop reference. void iput(struct inode *ip) { acquire(&icache.lock); if(ip->ref == 1 && (ip->flags & I_VALID) && ip->nlink == 0){ // inode is no longer used: truncate and free inode. if(ip->flags & I_BUSY) panic("iput busy"); ip->flags |= I_BUSY; release(&icache.lock); itrunc(ip); ip->type = 0; iupdate(ip); acquire(&icache.lock); ip->flags = 0; wakeup(ip); } ip->ref--; release(&icache.lock); } // Common idiom: unlock, then put. void iunlockput(struct inode *ip) { iunlock(ip); iput(ip); } //PAGEBREAK! // Inode contents // // The contents (data) associated with each inode is stored // in a sequence of blocks on the disk. The first NDIRECT blocks // are listed in ip->addrs[]. The next NINDIRECT blocks are // listed in the block ip->addrs[NDIRECT]. // Return the disk block address of the nth block in inode ip. // If there is no such block, bmap allocates one. static uint bmap(struct inode *ip, uint bn) { uint addr, *a; struct buf *bp; if(bn < NDIRECT){ if((addr = ip->addrs[bn]) == 0) ip->addrs[bn] = addr = balloc(ip->dev); return addr; } bn -= NDIRECT; if(bn < NINDIRECT){ // Load indirect block, allocating if necessary. if((addr = ip->addrs[NDIRECT]) == 0) ip->addrs[NDIRECT] = addr = balloc(ip->dev); bp = bread(ip->dev, addr); a = (uint*)bp->data; if((addr = a[bn]) == 0){ a[bn] = addr = balloc(ip->dev); log_write(bp); } brelse(bp); return addr; } panic("bmap: out of range"); } // Truncate inode (discard contents). // Only called after the last dirent referring // to this inode has been erased on disk. static void itrunc(struct inode *ip) { int i, j; struct buf *bp; uint *a; for(i = 0; i < NDIRECT; i++){ if(ip->addrs[i]){ bfree(ip->dev, ip->addrs[i]); ip->addrs[i] = 0; } } if(ip->addrs[NDIRECT]){ bp = bread(ip->dev, ip->addrs[NDIRECT]); a = (uint*)bp->data; for(j = 0; j < NINDIRECT; j++){ if(a[j]) bfree(ip->dev, a[j]); } brelse(bp); bfree(ip->dev, ip->addrs[NDIRECT]); ip->addrs[NDIRECT] = 0; } ip->size = 0; iupdate(ip); } // Copy stat information from inode. void stati(struct inode *ip, struct stat *st) { st->dev = ip->dev; st->ino = ip->inum; st->type = ip->type; st->nlink = ip->nlink; st->size = ip->size; } //PAGEBREAK! // Read data from inode. int readi(struct inode *ip, char *dst, uint off, uint n) { uint tot, m; struct buf *bp; if(ip->type == T_DEV){ if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].read) return -1; return devsw[ip->major].read(ip, dst, n); } if(off > ip->size || off + n < off) return -1; if(off + n > ip->size) n = ip->size - off; for(tot=0; totdev, bmap(ip, off/BSIZE)); m = min(n - tot, BSIZE - off%BSIZE); memmove(dst, bp->data + off%BSIZE, m); brelse(bp); } return n; } // PAGEBREAK! // Write data to inode. int writei(struct inode *ip, char *src, uint off, uint n) { uint tot, m; struct buf *bp; if(ip->type == T_DEV){ if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].write) return -1; return devsw[ip->major].write(ip, src, n); } if(off > ip->size || off + n < off) return -1; if(off + n > MAXFILE*BSIZE) return -1; for(tot=0; totdev, bmap(ip, off/BSIZE)); m = min(n - tot, BSIZE - off%BSIZE); memmove(bp->data + off%BSIZE, src, m); log_write(bp); brelse(bp); } if(n > 0 && off > ip->size){ ip->size = off; iupdate(ip); } return n; } //PAGEBREAK! // Directories int namecmp(const char *s, const char *t) { return strncmp(s, t, DIRSIZ); } // Look for a directory entry in a directory. // If found, set *poff to byte offset of entry. // Caller must have already locked dp. struct inode* dirlookup(struct inode *dp, char *name, uint *poff) { uint off, inum; struct dirent de; if(dp->type != T_DIR) panic("dirlookup not DIR"); for(off = 0; off < dp->size; off += sizeof(de)){ if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de)) panic("dirlink read"); if(de.inum == 0) continue; if(namecmp(name, de.name) == 0){ // entry matches path element if(poff) *poff = off; inum = de.inum; return iget(dp->dev, inum); } } return 0; } // Write a new directory entry (name, inum) into the directory dp. int dirlink(struct inode *dp, char *name, uint inum) { int off; struct dirent de; struct inode *ip; // Check that name is not present. if((ip = dirlookup(dp, name, 0)) != 0){ iput(ip); return -1; } // Look for an empty dirent. for(off = 0; off < dp->size; off += sizeof(de)){ if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de)) panic("dirlink read"); if(de.inum == 0) break; } strncpy(de.name, name, DIRSIZ); de.inum = inum; if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de)) panic("dirlink"); return 0; } //PAGEBREAK! // Paths // Copy the next path element from path into name. // Return a pointer to the element following the copied one. // The returned path has no leading slashes, // so the caller can check *path=='\0' to see if the name is the last one. // If no name to remove, return 0. // // Examples: // skipelem("a/bb/c", name) = "bb/c", setting name = "a" // skipelem("///a//bb", name) = "bb", setting name = "a" // skipelem("a", name) = "", setting name = "a" // skipelem("", name) = skipelem("////", name) = 0 // static char* skipelem(char *path, char *name) { char *s; int len; while(*path == '/') path++; if(*path == 0) return 0; s = path; while(*path != '/' && *path != 0) path++; len = path - s; if(len >= DIRSIZ) memmove(name, s, DIRSIZ); else { memmove(name, s, len); name[len] = 0; } while(*path == '/') path++; return path; } // Look up and return the inode for a path name. // If parent != 0, return the inode for the parent and copy the final // path element into name, which must have room for DIRSIZ bytes. static struct inode* namex(char *path, int nameiparent, char *name) { struct inode *ip, *next; if(*path == '/') ip = iget(ROOTDEV, ROOTINO); else ip = idup(proc->cwd); while((path = skipelem(path, name)) != 0){ ilock(ip); if(ip->type != T_DIR){ iunlockput(ip); return 0; } if(nameiparent && *path == '\0'){ // Stop one level early. iunlock(ip); return ip; } if((next = dirlookup(ip, name, 0)) == 0){ iunlockput(ip); return 0; } iunlockput(ip); ip = next; } if(nameiparent){ iput(ip); return 0; } return ip; } struct inode* namei(char *path) { char name[DIRSIZ]; return namex(path, 0, name); } struct inode* nameiparent(char *path, char *name) { return namex(path, 1, name); }