#include "param.h" #include "types.h" #include "defs.h" #include "x86.h" #include "mmu.h" #include "proc.h" #include "elf.h" static pde_t *kpgdir; // for use in scheduler() // Set up CPU's kernel segment descriptors. // Run once at boot time on each CPU. void seginit(void) { struct cpu *c; // Map virtual addresses to linear addresses using identity map. // Cannot share a CODE descriptor for both kernel and user // because it would have to have DPL_USR, but the CPU forbids // an interrupt from CPL=0 to DPL=3. c = &cpus[cpunum()]; c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0); c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER); c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER); // Map cpu, and curproc c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0); lgdt(c->gdt, sizeof(c->gdt)); loadgs(SEG_KCPU << 3); // Initialize cpu-local storage. cpu = c; proc = 0; } // Return the address of the PTE in page table pgdir // that corresponds to linear address va. If create!=0, // create any required page table pages. static pte_t * walkpgdir(pde_t *pgdir, const void *va, int create) { pde_t *pde; pte_t *pgtab; pde = &pgdir[PDX(va)]; if(*pde & PTE_P){ pgtab = (pte_t*)PTE_ADDR(*pde); } else { if(!create || (pgtab = (pte_t*)kalloc()) == 0) return 0; // Make sure all those PTE_P bits are zero. memset(pgtab, 0, PGSIZE); // The permissions here are overly generous, but they can // be further restricted by the permissions in the page table // entries, if necessary. *pde = PADDR(pgtab) | PTE_P | PTE_W | PTE_U; } return &pgtab[PTX(va)]; } // Create PTEs for linear addresses starting at la that refer to // physical addresses starting at pa. la and size might not // be page-aligned. static int mappages(pde_t *pgdir, void *la, uint size, uint pa, int perm) { char *a, *last; pte_t *pte; a = PGROUNDDOWN(la); last = PGROUNDDOWN(la + size - 1); for(;;){ pte = walkpgdir(pgdir, a, 1); if(pte == 0) return -1; if(*pte & PTE_P) panic("remap"); *pte = pa | perm | PTE_P; if(a == last) break; a += PGSIZE; pa += PGSIZE; } return 0; } // The mappings from logical to linear are one to one (i.e., // segmentation doesn't do anything). // There is one page table per process, plus one that's used // when a CPU is not running any process (kpgdir). // A user process uses the same page table as the kernel; the // page protection bits prevent it from using anything other // than its memory. // // setupkvm() and exec() set up every page table like this: // 0..640K : user memory (text, data, stack, heap) // 640K..1M : mapped direct (for IO space) // 1M..end : mapped direct (for the kernel's text and data) // end..PHYSTOP : mapped direct (kernel heap and user pages) // 0xfe000000..0 : mapped direct (devices such as ioapic) // // The kernel allocates memory for its heap and for user memory // between kernend and the end of physical memory (PHYSTOP). // The virtual address space of each user program includes the kernel // (which is inaccessible in user mode). The user program addresses // range from 0 till 640KB (USERTOP), which where the I/O hole starts // (both in physical memory and in the kernel's virtual address // space). // Allocate one page table for the machine for the kernel address // space for scheduler processes. void kvmalloc(void) { kpgdir = setupkvm(); } // Set up kernel part of a page table. pde_t* setupkvm(void) { extern char etext[]; char *rwstart; pde_t *pgdir; uint rwlen; rwstart = PGROUNDDOWN(etext); rwlen = (uint)rwstart - 0x100000; // Allocate page directory if((pgdir = (pde_t*)kalloc()) == 0) return 0; memset(pgdir, 0, PGSIZE); if(// Map IO space from 640K to 1Mbyte mappages(pgdir, (void*)USERTOP, 0x60000, USERTOP, PTE_W) < 0 || // Map kernel instructions mappages(pgdir, (void*)0x100000, rwlen, 0x100000, 0) < 0 || // Map kernel data and free memory pool mappages(pgdir, rwstart, PHYSTOP-(uint)rwstart, (uint)rwstart, PTE_W) < 0 || // Map devices such as ioapic, lapic, ... mappages(pgdir, (void*)0xFE000000, 0x2000000, 0xFE000000, PTE_W) < 0) return 0; return pgdir; } // Turn on paging. void vmenable(void) { uint cr0; switchkvm(); // load kpgdir into cr3 cr0 = rcr0(); cr0 |= CR0_PG; lcr0(cr0); } // Switch h/w page table register to the kernel-only page table, // for when no process is running. void switchkvm() { lcr3(PADDR(kpgdir)); // switch to the kernel page table } // Switch h/w page table and TSS registers to point to process p. void switchuvm(struct proc *p) { pushcli(); // Setup TSS cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0); cpu->gdt[SEG_TSS].s = 0; cpu->ts.ss0 = SEG_KDATA << 3; cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE; ltr(SEG_TSS << 3); if(p->pgdir == 0) panic("switchuvm: no pgdir\n"); lcr3(PADDR(p->pgdir)); // switch to new address space popcli(); } // Return the physical address that a given user address // maps to. The result is also a kernel logical address, // since the kernel maps the physical memory allocated to user // processes directly. char* uva2ka(pde_t *pgdir, char *uva) { pte_t *pte; pte = walkpgdir(pgdir, uva, 0); if((*pte & PTE_P) == 0) return 0; if((*pte & PTE_U) == 0) return 0; return (char*)PTE_ADDR(*pte); } // Load the initcode into address 0 of pgdir. // sz must be less than a page. void inituvm(pde_t *pgdir, char *init, uint sz) { char *mem; if(sz >= PGSIZE) panic("inituvm: more than a page"); mem = kalloc(); memset(mem, 0, PGSIZE); mappages(pgdir, 0, PGSIZE, PADDR(mem), PTE_W|PTE_U); memmove(mem, init, sz); } // Load a program segment into pgdir. addr must be page-aligned // and the pages from addr to addr+sz must already be mapped. int loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz) { uint i, pa, n; pte_t *pte; if((uint)addr % PGSIZE != 0) panic("loaduvm: addr must be page aligned\n"); for(i = 0; i < sz; i += PGSIZE){ if((pte = walkpgdir(pgdir, addr+i, 0)) == 0) panic("loaduvm: address should exist\n"); pa = PTE_ADDR(*pte); if(sz - i < PGSIZE) n = sz - i; else n = PGSIZE; if(readi(ip, (char*)pa, offset+i, n) != n) return -1; } return 0; } // Allocate memory to the process to bring its size from oldsz to // newsz. Allocates physical memory and page table entries. oldsz and // newsz need not be page-aligned, nor does newsz have to be larger // than oldsz. Returns the new process size or 0 on error. int allocuvm(pde_t *pgdir, uint oldsz, uint newsz) { char *a, *last, *mem; if(newsz > USERTOP) return 0; if(newsz < oldsz) return oldsz; a = (char*)PGROUNDUP(oldsz); last = PGROUNDDOWN(newsz - 1); for(; a <= last; a += PGSIZE){ mem = kalloc(); if(mem == 0){ cprintf("allocuvm out of memory\n"); deallocuvm(pgdir, newsz, oldsz); return 0; } memset(mem, 0, PGSIZE); mappages(pgdir, a, PGSIZE, PADDR(mem), PTE_W|PTE_U); } return newsz; } // Deallocate user pages to bring the process size from oldsz to // newsz. oldsz and newsz need not be page-aligned, nor does newsz // need to be less than oldsz. oldsz can be larger than the actual // process size. Returns the new process size. int deallocuvm(pde_t *pgdir, uint oldsz, uint newsz) { char *a, *last; pte_t *pte; uint pa; if(newsz >= oldsz) return oldsz; a = (char*)PGROUNDUP(newsz); last = PGROUNDDOWN(oldsz - 1); for(; a <= last; a += PGSIZE){ pte = walkpgdir(pgdir, a, 0); if(pte && (*pte & PTE_P) != 0){ pa = PTE_ADDR(*pte); if(pa == 0) panic("kfree"); kfree((char*)pa); *pte = 0; } } return newsz; } // Free a page table and all the physical memory pages // in the user part. void freevm(pde_t *pgdir) { uint i; if(pgdir == 0) panic("freevm: no pgdir"); deallocuvm(pgdir, USERTOP, 0); for(i = 0; i < NPDENTRIES; i++){ if(pgdir[i] & PTE_P) kfree((char*)PTE_ADDR(pgdir[i])); } kfree((char*)pgdir); } // Given a parent process's page table, create a copy // of it for a child. pde_t* copyuvm(pde_t *pgdir, uint sz) { pde_t *d; pte_t *pte; uint pa, i; char *mem; if((d = setupkvm()) == 0) return 0; for(i = 0; i < sz; i += PGSIZE){ if((pte = walkpgdir(pgdir, (void*)i, 0)) == 0) panic("copyuvm: pte should exist\n"); if(!(*pte & PTE_P)) panic("copyuvm: page not present\n"); pa = PTE_ADDR(*pte); if((mem = kalloc()) == 0) goto bad; memmove(mem, (char*)pa, PGSIZE); if(mappages(d, (void*)i, PGSIZE, PADDR(mem), PTE_W|PTE_U) < 0) goto bad; } return d; bad: freevm(d); return 0; } // copy some data to user address va in page table pgdir. // most useful when pgdir is not the current page table. // returns 1 if everthing OK, 0 on error. // uva2ka ensures this only works for PTE_U pages. int copyout(pde_t *pgdir, uint va, void *xbuf, uint len) { char *buf, *pa0; uint n, va0; buf = (char*)xbuf; while(len > 0){ va0 = (uint)PGROUNDDOWN(va); pa0 = uva2ka(pgdir, (char*)va0); if(pa0 == 0) return -1; n = PGSIZE - (va - va0); if(n > len) n = len; memmove(pa0 + (va - va0), buf, n); len -= n; buf += n; va = va0 + PGSIZE; } return 0; }