#include "asm.h" # Start an Application Processor. This must be placed on a 4KB boundary # somewhere in the 1st MB of conventional memory (APBOOTSTRAP). However, # due to some shortcuts below it's restricted further to within the 1st # 64KB. The AP starts in real-mode, with # CS selector set to the startup memory address/16; # CS base set to startup memory address; # CS limit set to 64KB; # CPL and IP set to 0. # # Bootothers (in main.c) starts each non-boot CPU in turn. # It puts the correct %esp in start-4, # and the place to jump to in start-8. # # This code is identical to bootasm.S except: # - it does not need to enable A20 # - it uses the address at start-4 for the %esp # - it jumps to the address at start-8 instead of calling bootmain .set PROT_MODE_CSEG, 0x8 # kernel code segment selector .set PROT_MODE_DSEG, 0x10 # kernel data segment selector .set CR0_PE_ON, 0x1 # protected mode enable flag .globl start start: .code16 # Assemble for 16-bit mode cli # Disable interrupts cld # String operations increment # Set up the important data segment registers (DS, ES, SS). xorw %ax,%ax # Segment number zero movw %ax,%ds # -> Data Segment movw %ax,%es # -> Extra Segment movw %ax,%ss # -> Stack Segment //PAGEBREAK! # Switch from real to protected mode, using a bootstrap GDT # and segment translation that makes virtual addresses # identical to their physical addresses, so that the # effective memory map does not change during the switch. lgdt gdtdesc movl %cr0, %eax orl $CR0_PE_ON, %eax movl %eax, %cr0 # Jump to next instruction, but in 32-bit code segment. # Switches processor into 32-bit mode. ljmp $PROT_MODE_CSEG, $protcseg .code32 # Assemble for 32-bit mode protcseg: # Set up the protected-mode data segment registers movw $PROT_MODE_DSEG, %ax # Our data segment selector movw %ax, %ds # -> DS: Data Segment movw %ax, %es # -> ES: Extra Segment movw %ax, %fs # -> FS movw %ax, %gs # -> GS movw %ax, %ss # -> SS: Stack Segment movl start-4, %esp movl start-8, %eax jmp *%eax # Bootstrap GDT .p2align 2 # force 4 byte alignment gdt: SEG_NULLASM # null seg SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg gdtdesc: .word 0x17 # sizeof(gdt) - 1 .long gdt # address gdt