// Segments in proc->gdt. #define NSEGS 7 // Per-CPU state struct cpu { uchar id; // Local APIC ID; index into cpus[] below struct context *scheduler; // swtch() here to enter scheduler struct taskstate ts; // Used by x86 to find stack for interrupt struct segdesc gdt[NSEGS]; // x86 global descriptor table volatile uint started; // Has the CPU started? int ncli; // Depth of pushcli nesting. int intena; // Were interrupts enabled before pushcli? // Cpu-local storage variables; see below struct cpu *cpu; struct proc *proc; // The currently-running process. }; extern struct cpu cpus[NCPU]; extern int ncpu; // Per-CPU variables, holding pointers to the // current cpu and to the current process. // The asm suffix tells gcc to use "%gs:0" to refer to cpu // and "%gs:4" to refer to proc. seginit sets up the // %gs segment register so that %gs refers to the memory // holding those two variables in the local cpu's struct cpu. // This is similar to how thread-local variables are implemented // in thread libraries such as Linux pthreads. extern struct cpu *cpu asm("%gs:0"); // &cpus[cpunum()] extern struct proc *proc asm("%gs:4"); // cpus[cpunum()].proc //PAGEBREAK: 17 // Saved registers for kernel context switches. // Don't need to save all the segment registers (%cs, etc), // because they are constant across kernel contexts. // Don't need to save %eax, %ecx, %edx, because the // x86 convention is that the caller has saved them. // Contexts are stored at the bottom of the stack they // describe; the stack pointer is the address of the context. // The layout of the context matches the layout of the stack in swtch.S // at the "Switch stacks" comment. Switch doesn't save eip explicitly, // but it is on the stack and allocproc() manipulates it. struct context { uint edi; uint esi; uint ebx; uint ebp; uint eip; }; enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE }; // Per-process state struct proc { uint sz; // Size of process memory (bytes) pde_t* pgdir; // Page table char *kstack; // Bottom of kernel stack for this process enum procstate state; // Process state volatile int pid; // Process ID struct proc *parent; // Parent process struct trapframe *tf; // Trap frame for current syscall struct context *context; // swtch() here to run process void *chan; // If non-zero, sleeping on chan int killed; // If non-zero, have been killed struct file *ofile[NOFILE]; // Open files struct inode *cwd; // Current directory char name[16]; // Process name (debugging) }; // Process memory is laid out contiguously, low addresses first: // text // original data and bss // fixed-size stack // expandable heap