fix corner cases in exec of ELF

put an invalid page below the stack
have fork() handle invalid pages
This commit is contained in:
Robert Morris 2010-08-06 11:12:18 -04:00
parent 1afc9d3fca
commit c4cc10da7e
8 changed files with 84 additions and 37 deletions

3
defs.h
View file

@ -163,7 +163,8 @@ void freevm(pde_t*);
void inituvm(pde_t*, char*, char*, uint);
int loaduvm(pde_t*, char*, struct inode *ip, uint, uint);
pde_t* copyuvm(pde_t*,uint);
void loadvm(struct proc*);
void switchuvm(struct proc*);
void switchkvm();
// number of elements in fixed-size array
#define NELEM(x) (sizeof(x)/sizeof((x)[0]))

7
exec.c
View file

@ -43,13 +43,16 @@ exec(char *path, char **argv)
goto bad;
if (!allocuvm(pgdir, (char *)ph.va, ph.memsz))
goto bad;
sz += PGROUNDUP(ph.memsz);
if(ph.va + ph.memsz > sz)
sz = ph.va + ph.memsz;
if (!loaduvm(pgdir, (char *)ph.va, ip, ph.offset, ph.filesz))
goto bad;
}
iunlockput(ip);
// Allocate and initialize stack at sz
sz = PGROUNDUP(sz);
sz += PGSIZE; // leave an invalid page
if (!allocuvm(pgdir, (char *)sz, PGSIZE))
goto bad;
mem = uva2ka(pgdir, (char *)sz);
@ -95,7 +98,7 @@ exec(char *path, char **argv)
proc->tf->eip = elf.entry; // main
proc->tf->esp = sp;
loadvm(proc);
switchuvm(proc);
freevm(oldpgdir);

View file

@ -1,9 +1,8 @@
// Physical memory allocator, intended to allocate
// memory for user processes. Allocates in 4096-byte "pages".
// memory for user processes. Allocates in 4096-byte pages.
// Free list is kept sorted and combines adjacent pages into
// long runs, to make it easier to allocate big segments.
// One reason the page size is 4k is that the x86 segment size
// granularity is 4k.
// This combining is not useful now that xv6 uses paging.
#include "types.h"
#include "defs.h"

1
mmu.h
View file

@ -129,7 +129,6 @@ struct segdesc {
#define PTE_ADDR(pte) ((uint) (pte) & ~0xFFF)
typedef uint pte_t;
extern pde_t *kpgdir;
// Control Register flags
#define CR0_PE 0x00000001 // Protection Enable

6
proc.c
View file

@ -145,7 +145,7 @@ growproc(int n)
if (!allocuvm(proc->pgdir, (char *)proc->sz, n))
return -1;
proc->sz += n;
loadvm(proc);
switchuvm(proc);
return 0;
}
@ -214,9 +214,10 @@ scheduler(void)
// to release ptable.lock and then reacquire it
// before jumping back to us.
proc = p;
loadvm(p);
switchuvm(p);
p->state = RUNNING;
swtch(&cpu->scheduler, proc->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
@ -242,7 +243,6 @@ sched(void)
panic("sched running");
if(readeflags()&FL_IF)
panic("sched interruptible");
lcr3(PADDR(kpgdir)); // Switch to the kernel page table
intena = cpu->intena;
swtch(&proc->context, cpu->scheduler);
cpu->intena = intena;

5
proc.h
View file

@ -16,7 +16,7 @@
// Contexts are stored at the bottom of the stack they
// describe; the stack pointer is the address of the context.
// The layout of the context matches the layout of the stack in swtch.S
// at "Switch stacks" comment. Switch itself doesn't save eip explicitly,
// at the "Switch stacks" comment. Switch doesn't save eip explicitly,
// but it is on the stack and allocproc() manipulates it.
struct context {
uint edi;
@ -31,7 +31,7 @@ enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // linear address of proc's pgdir
pde_t* pgdir; // Linear address of proc's pgdir
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
volatile int pid; // Process ID
@ -48,6 +48,7 @@ struct proc {
// Process memory is laid out contiguously, low addresses first:
// text
// original data and bss
// invalid page
// fixed-size stack
// expandable heap

View file

@ -1261,6 +1261,29 @@ sbrktest(void)
printf(stdout, "sbrk test OK\n");
}
void
stacktest(void)
{
printf(stdout, "stack test\n");
char dummy = 1;
char *p = &dummy;
int ppid = getpid();
int pid = fork();
if(pid < 0){
printf(stdout, "fork failed\n");
exit();
}
if(pid == 0){
// should cause a trap:
p[-4096] = 'z';
kill(ppid);
printf(stdout, "stack test failed: page before stack was writeable\n");
exit();
}
wait();
printf(stdout, "stack test OK\n");
}
int
main(int argc, char *argv[])
{
@ -1272,6 +1295,7 @@ main(int argc, char *argv[])
}
close(open("usertests.ran", O_CREATE));
stacktest();
sbrktest();
opentest();

54
vm.c
View file

@ -8,13 +8,20 @@
// The mappings from logical to linear are one to one (i.e.,
// segmentation doesn't do anything).
// The mapping from linear to physical are one to one for the kernel.
// The mappings for the kernel include all of physical memory (until
// PHYSTOP), including the I/O hole, and the top of physical address
// space, where additional devices are located.
// The kernel itself is linked to be at 1MB, and its physical memory
// is also at 1MB.
// Physical memory for user programs is allocated from physical memory
// There is one page table per process, plus one that's used
// when a CPU is not running any process (kpgdir).
// A user process uses the same page table as the kernel; the
// page protection bits prevent it from using anything other
// than its memory.
//
// setupkvm() and exec() set up every page table like this:
// 0..640K : user memory (text, data, stack, heap)
// 640K..1M : mapped direct (for IO space)
// 1M..kernend : mapped direct (for the kernel's text and data)
// kernend..PHYSTOP : mapped direct (kernel heap and user pages)
// 0xfe000000..0 : mapped direct (devices such as ioapic)
//
// The kernel allocates memory for its heap and for user memory
// between kernend and the end of physical memory (PHYSTOP).
// The virtual address space of each user program includes the kernel
// (which is inaccessible in user mode). The user program addresses
@ -31,7 +38,7 @@ static uint kerndata;
static uint kerndsz;
static uint kernend;
static uint freesz;
pde_t *kpgdir; // One kernel page table for scheduler procs
static pde_t *kpgdir; // for use in scheduler()
// return the address of the PTE in page table pgdir
// that corresponds to linear address va. if create!=0,
@ -114,9 +121,9 @@ ksegment(void)
proc = 0;
}
// Setup address space and current process task state.
// Switch h/w page table and TSS registers to point to process p.
void
loadvm(struct proc *p)
switchuvm(struct proc *p)
{
pushcli();
@ -128,14 +135,21 @@ loadvm(struct proc *p)
ltr(SEG_TSS << 3);
if (p->pgdir == 0)
panic("loadvm: no pgdir\n");
panic("switchuvm: no pgdir\n");
lcr3(PADDR(p->pgdir)); // switch to new address space
popcli();
}
// Setup kernel part of a page table. Linear adresses map one-to-one
// on physical addresses.
// Switch h/w page table register to the kernel-only page table, for when
// no process is running.
void
switchkvm()
{
lcr3(PADDR(kpgdir)); // Switch to the kernel page table
}
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
@ -163,6 +177,10 @@ setupkvm(void)
return pgdir;
}
// return the physical address that a given user address
// maps to. the result is also a kernel logical address,
// since the kernel maps the physical memory allocated to user
// processes directly.
char*
uva2ka(pde_t *pgdir, char *uva)
{
@ -266,6 +284,8 @@ inituvm(pde_t *pgdir, char *addr, char *init, uint sz)
}
}
// given a parent process's page table, create a copy
// of it for a child.
pde_t*
copyuvm(pde_t *pgdir, uint sz)
{
@ -278,6 +298,7 @@ copyuvm(pde_t *pgdir, uint sz)
for (i = 0; i < sz; i += PGSIZE) {
if (!(pte = walkpgdir(pgdir, (void *)i, 0)))
panic("copyuvm: pte should exist\n");
if(*pte & PTE_P){
pa = PTE_ADDR(*pte);
if (!(mem = kalloc(PGSIZE)))
return 0;
@ -285,10 +306,12 @@ copyuvm(pde_t *pgdir, uint sz)
if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U))
return 0;
}
}
return d;
}
// Gather about physical memory layout. Called once during boot.
// Gather information about physical memory layout.
// Called once during boot.
void
pminit(void)
{
@ -307,9 +330,6 @@ pminit(void)
kerndsz = ph[1].memsz;
freesz = PHYSTOP - kernend;
cprintf("kerntext@0x%x(sz=0x%x), kerndata@0x%x(sz=0x%x), kernend 0x%x freesz = 0x%x\n",
kerntext, kerntsz, kerndata, kerndsz, kernend, freesz);
kinit((char *)kernend, freesz);
}