fix corner cases in exec of ELF

put an invalid page below the stack
have fork() handle invalid pages
This commit is contained in:
Robert Morris 2010-08-06 11:12:18 -04:00
parent 1afc9d3fca
commit c4cc10da7e
8 changed files with 84 additions and 37 deletions

3
defs.h
View file

@ -163,7 +163,8 @@ void freevm(pde_t*);
void inituvm(pde_t*, char*, char*, uint); void inituvm(pde_t*, char*, char*, uint);
int loaduvm(pde_t*, char*, struct inode *ip, uint, uint); int loaduvm(pde_t*, char*, struct inode *ip, uint, uint);
pde_t* copyuvm(pde_t*,uint); pde_t* copyuvm(pde_t*,uint);
void loadvm(struct proc*); void switchuvm(struct proc*);
void switchkvm();
// number of elements in fixed-size array // number of elements in fixed-size array
#define NELEM(x) (sizeof(x)/sizeof((x)[0])) #define NELEM(x) (sizeof(x)/sizeof((x)[0]))

7
exec.c
View file

@ -43,13 +43,16 @@ exec(char *path, char **argv)
goto bad; goto bad;
if (!allocuvm(pgdir, (char *)ph.va, ph.memsz)) if (!allocuvm(pgdir, (char *)ph.va, ph.memsz))
goto bad; goto bad;
sz += PGROUNDUP(ph.memsz); if(ph.va + ph.memsz > sz)
sz = ph.va + ph.memsz;
if (!loaduvm(pgdir, (char *)ph.va, ip, ph.offset, ph.filesz)) if (!loaduvm(pgdir, (char *)ph.va, ip, ph.offset, ph.filesz))
goto bad; goto bad;
} }
iunlockput(ip); iunlockput(ip);
// Allocate and initialize stack at sz // Allocate and initialize stack at sz
sz = PGROUNDUP(sz);
sz += PGSIZE; // leave an invalid page
if (!allocuvm(pgdir, (char *)sz, PGSIZE)) if (!allocuvm(pgdir, (char *)sz, PGSIZE))
goto bad; goto bad;
mem = uva2ka(pgdir, (char *)sz); mem = uva2ka(pgdir, (char *)sz);
@ -95,7 +98,7 @@ exec(char *path, char **argv)
proc->tf->eip = elf.entry; // main proc->tf->eip = elf.entry; // main
proc->tf->esp = sp; proc->tf->esp = sp;
loadvm(proc); switchuvm(proc);
freevm(oldpgdir); freevm(oldpgdir);

View file

@ -1,9 +1,8 @@
// Physical memory allocator, intended to allocate // Physical memory allocator, intended to allocate
// memory for user processes. Allocates in 4096-byte "pages". // memory for user processes. Allocates in 4096-byte pages.
// Free list is kept sorted and combines adjacent pages into // Free list is kept sorted and combines adjacent pages into
// long runs, to make it easier to allocate big segments. // long runs, to make it easier to allocate big segments.
// One reason the page size is 4k is that the x86 segment size // This combining is not useful now that xv6 uses paging.
// granularity is 4k.
#include "types.h" #include "types.h"
#include "defs.h" #include "defs.h"

1
mmu.h
View file

@ -129,7 +129,6 @@ struct segdesc {
#define PTE_ADDR(pte) ((uint) (pte) & ~0xFFF) #define PTE_ADDR(pte) ((uint) (pte) & ~0xFFF)
typedef uint pte_t; typedef uint pte_t;
extern pde_t *kpgdir;
// Control Register flags // Control Register flags
#define CR0_PE 0x00000001 // Protection Enable #define CR0_PE 0x00000001 // Protection Enable

6
proc.c
View file

@ -145,7 +145,7 @@ growproc(int n)
if (!allocuvm(proc->pgdir, (char *)proc->sz, n)) if (!allocuvm(proc->pgdir, (char *)proc->sz, n))
return -1; return -1;
proc->sz += n; proc->sz += n;
loadvm(proc); switchuvm(proc);
return 0; return 0;
} }
@ -214,9 +214,10 @@ scheduler(void)
// to release ptable.lock and then reacquire it // to release ptable.lock and then reacquire it
// before jumping back to us. // before jumping back to us.
proc = p; proc = p;
loadvm(p); switchuvm(p);
p->state = RUNNING; p->state = RUNNING;
swtch(&cpu->scheduler, proc->context); swtch(&cpu->scheduler, proc->context);
switchkvm();
// Process is done running for now. // Process is done running for now.
// It should have changed its p->state before coming back. // It should have changed its p->state before coming back.
@ -242,7 +243,6 @@ sched(void)
panic("sched running"); panic("sched running");
if(readeflags()&FL_IF) if(readeflags()&FL_IF)
panic("sched interruptible"); panic("sched interruptible");
lcr3(PADDR(kpgdir)); // Switch to the kernel page table
intena = cpu->intena; intena = cpu->intena;
swtch(&proc->context, cpu->scheduler); swtch(&proc->context, cpu->scheduler);
cpu->intena = intena; cpu->intena = intena;

5
proc.h
View file

@ -16,7 +16,7 @@
// Contexts are stored at the bottom of the stack they // Contexts are stored at the bottom of the stack they
// describe; the stack pointer is the address of the context. // describe; the stack pointer is the address of the context.
// The layout of the context matches the layout of the stack in swtch.S // The layout of the context matches the layout of the stack in swtch.S
// at "Switch stacks" comment. Switch itself doesn't save eip explicitly, // at the "Switch stacks" comment. Switch doesn't save eip explicitly,
// but it is on the stack and allocproc() manipulates it. // but it is on the stack and allocproc() manipulates it.
struct context { struct context {
uint edi; uint edi;
@ -31,7 +31,7 @@ enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
// Per-process state // Per-process state
struct proc { struct proc {
uint sz; // Size of process memory (bytes) uint sz; // Size of process memory (bytes)
pde_t* pgdir; // linear address of proc's pgdir pde_t* pgdir; // Linear address of proc's pgdir
char *kstack; // Bottom of kernel stack for this process char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state enum procstate state; // Process state
volatile int pid; // Process ID volatile int pid; // Process ID
@ -48,6 +48,7 @@ struct proc {
// Process memory is laid out contiguously, low addresses first: // Process memory is laid out contiguously, low addresses first:
// text // text
// original data and bss // original data and bss
// invalid page
// fixed-size stack // fixed-size stack
// expandable heap // expandable heap

View file

@ -1261,6 +1261,29 @@ sbrktest(void)
printf(stdout, "sbrk test OK\n"); printf(stdout, "sbrk test OK\n");
} }
void
stacktest(void)
{
printf(stdout, "stack test\n");
char dummy = 1;
char *p = &dummy;
int ppid = getpid();
int pid = fork();
if(pid < 0){
printf(stdout, "fork failed\n");
exit();
}
if(pid == 0){
// should cause a trap:
p[-4096] = 'z';
kill(ppid);
printf(stdout, "stack test failed: page before stack was writeable\n");
exit();
}
wait();
printf(stdout, "stack test OK\n");
}
int int
main(int argc, char *argv[]) main(int argc, char *argv[])
{ {
@ -1272,6 +1295,7 @@ main(int argc, char *argv[])
} }
close(open("usertests.ran", O_CREATE)); close(open("usertests.ran", O_CREATE));
stacktest();
sbrktest(); sbrktest();
opentest(); opentest();

54
vm.c
View file

@ -8,13 +8,20 @@
// The mappings from logical to linear are one to one (i.e., // The mappings from logical to linear are one to one (i.e.,
// segmentation doesn't do anything). // segmentation doesn't do anything).
// The mapping from linear to physical are one to one for the kernel. // There is one page table per process, plus one that's used
// The mappings for the kernel include all of physical memory (until // when a CPU is not running any process (kpgdir).
// PHYSTOP), including the I/O hole, and the top of physical address // A user process uses the same page table as the kernel; the
// space, where additional devices are located. // page protection bits prevent it from using anything other
// The kernel itself is linked to be at 1MB, and its physical memory // than its memory.
// is also at 1MB. //
// Physical memory for user programs is allocated from physical memory // setupkvm() and exec() set up every page table like this:
// 0..640K : user memory (text, data, stack, heap)
// 640K..1M : mapped direct (for IO space)
// 1M..kernend : mapped direct (for the kernel's text and data)
// kernend..PHYSTOP : mapped direct (kernel heap and user pages)
// 0xfe000000..0 : mapped direct (devices such as ioapic)
//
// The kernel allocates memory for its heap and for user memory
// between kernend and the end of physical memory (PHYSTOP). // between kernend and the end of physical memory (PHYSTOP).
// The virtual address space of each user program includes the kernel // The virtual address space of each user program includes the kernel
// (which is inaccessible in user mode). The user program addresses // (which is inaccessible in user mode). The user program addresses
@ -31,7 +38,7 @@ static uint kerndata;
static uint kerndsz; static uint kerndsz;
static uint kernend; static uint kernend;
static uint freesz; static uint freesz;
pde_t *kpgdir; // One kernel page table for scheduler procs static pde_t *kpgdir; // for use in scheduler()
// return the address of the PTE in page table pgdir // return the address of the PTE in page table pgdir
// that corresponds to linear address va. if create!=0, // that corresponds to linear address va. if create!=0,
@ -114,9 +121,9 @@ ksegment(void)
proc = 0; proc = 0;
} }
// Setup address space and current process task state. // Switch h/w page table and TSS registers to point to process p.
void void
loadvm(struct proc *p) switchuvm(struct proc *p)
{ {
pushcli(); pushcli();
@ -128,14 +135,21 @@ loadvm(struct proc *p)
ltr(SEG_TSS << 3); ltr(SEG_TSS << 3);
if (p->pgdir == 0) if (p->pgdir == 0)
panic("loadvm: no pgdir\n"); panic("switchuvm: no pgdir\n");
lcr3(PADDR(p->pgdir)); // switch to new address space lcr3(PADDR(p->pgdir)); // switch to new address space
popcli(); popcli();
} }
// Setup kernel part of a page table. Linear adresses map one-to-one // Switch h/w page table register to the kernel-only page table, for when
// on physical addresses. // no process is running.
void
switchkvm()
{
lcr3(PADDR(kpgdir)); // Switch to the kernel page table
}
// Set up kernel part of a page table.
pde_t* pde_t*
setupkvm(void) setupkvm(void)
{ {
@ -163,6 +177,10 @@ setupkvm(void)
return pgdir; return pgdir;
} }
// return the physical address that a given user address
// maps to. the result is also a kernel logical address,
// since the kernel maps the physical memory allocated to user
// processes directly.
char* char*
uva2ka(pde_t *pgdir, char *uva) uva2ka(pde_t *pgdir, char *uva)
{ {
@ -266,6 +284,8 @@ inituvm(pde_t *pgdir, char *addr, char *init, uint sz)
} }
} }
// given a parent process's page table, create a copy
// of it for a child.
pde_t* pde_t*
copyuvm(pde_t *pgdir, uint sz) copyuvm(pde_t *pgdir, uint sz)
{ {
@ -278,6 +298,7 @@ copyuvm(pde_t *pgdir, uint sz)
for (i = 0; i < sz; i += PGSIZE) { for (i = 0; i < sz; i += PGSIZE) {
if (!(pte = walkpgdir(pgdir, (void *)i, 0))) if (!(pte = walkpgdir(pgdir, (void *)i, 0)))
panic("copyuvm: pte should exist\n"); panic("copyuvm: pte should exist\n");
if(*pte & PTE_P){
pa = PTE_ADDR(*pte); pa = PTE_ADDR(*pte);
if (!(mem = kalloc(PGSIZE))) if (!(mem = kalloc(PGSIZE)))
return 0; return 0;
@ -285,10 +306,12 @@ copyuvm(pde_t *pgdir, uint sz)
if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U)) if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U))
return 0; return 0;
} }
}
return d; return d;
} }
// Gather about physical memory layout. Called once during boot. // Gather information about physical memory layout.
// Called once during boot.
void void
pminit(void) pminit(void)
{ {
@ -307,9 +330,6 @@ pminit(void)
kerndsz = ph[1].memsz; kerndsz = ph[1].memsz;
freesz = PHYSTOP - kernend; freesz = PHYSTOP - kernend;
cprintf("kerntext@0x%x(sz=0x%x), kerndata@0x%x(sz=0x%x), kernend 0x%x freesz = 0x%x\n",
kerntext, kerntsz, kerndata, kerndsz, kernend, freesz);
kinit((char *)kernend, freesz); kinit((char *)kernend, freesz);
} }