no more big kernel lock
succeeds at usertests.c pipe test
This commit is contained in:
parent
b41b38d0da
commit
4e8f237be8
15 changed files with 202 additions and 95 deletions
49
Notes
49
Notes
|
@ -85,17 +85,44 @@ test pipe reader closes then write
|
|||
test two readers, two writers.
|
||||
test children being inherited by grandparent &c
|
||||
|
||||
kill
|
||||
sleep()ing for something
|
||||
running at user level
|
||||
running in kernel
|
||||
ooh, the relevant CPU may never get a clock interrupt
|
||||
should each cpu have its own clock?
|
||||
where to check?
|
||||
loops around sleep()
|
||||
return from any trap
|
||||
rules about being killed deep inside a system call
|
||||
test above cases
|
||||
some sleep()s should be interruptible by kill()
|
||||
|
||||
cli/sti in acquire/release should nest!
|
||||
in case you acquire two locks
|
||||
|
||||
what would need fixing if we got rid of kernel_lock?
|
||||
console output
|
||||
proc_exit() needs lock on proc *array* to deallocate
|
||||
kill() needs lock on proc *array*
|
||||
allocator's free list
|
||||
global fd table (really free-ness)
|
||||
sys_close() on fd table
|
||||
fork on proc list, also next pid
|
||||
hold lock until public slots in proc struct initialized
|
||||
|
||||
locks
|
||||
init_lock
|
||||
sequences CPU startup
|
||||
proc_table_lock
|
||||
also protects next_pid
|
||||
per-fd lock *just* protects count read-modify-write
|
||||
also maybe freeness?
|
||||
memory allocator
|
||||
printf
|
||||
|
||||
wakeup needs proc_table_lock
|
||||
so we need recursive locks?
|
||||
or you must hold the lock to call wakeup?
|
||||
|
||||
if locks contain proc *, they can't be used at interrupt time
|
||||
only proc_table_lock will be used at interrupt time?
|
||||
maybe it doesn't matter if we use curproc?
|
||||
|
||||
in general, the table locks protect both free-ness and
|
||||
public variables of table elements
|
||||
in many cases you can use table elements w/o a lock
|
||||
e.g. if you are the process, or you are using an fd
|
||||
|
||||
why can't i get a lock in console code?
|
||||
always triple fault
|
||||
lock code shouldn't call cprintf...
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
#include <types.h>
|
||||
#include <x86.h>
|
||||
#include "defs.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
struct spinlock console_lock;
|
||||
|
||||
/*
|
||||
* copy console output to parallel port, which you can tell
|
||||
|
@ -26,6 +29,8 @@ cons_putc(int c)
|
|||
unsigned short *crt = (unsigned short *) 0xB8000; // base of CGA memory
|
||||
int ind;
|
||||
|
||||
//acquire(&console_lock);
|
||||
|
||||
lpt_putc(c);
|
||||
|
||||
// cursor position, 16 bits, col + 80*row
|
||||
|
@ -56,6 +61,8 @@ cons_putc(int c)
|
|||
outb(crtport + 1, ind >> 8);
|
||||
outb(crtport, 15);
|
||||
outb(crtport + 1, ind);
|
||||
|
||||
//release(&console_lock);
|
||||
}
|
||||
|
||||
void
|
||||
|
|
10
defs.h
10
defs.h
|
@ -13,7 +13,7 @@ struct proc;
|
|||
struct jmpbuf;
|
||||
void setupsegs(struct proc *);
|
||||
struct proc * newproc(void);
|
||||
void swtch(void);
|
||||
void swtch(int);
|
||||
void sleep(void *);
|
||||
void wakeup(void *);
|
||||
void scheduler(void);
|
||||
|
@ -55,10 +55,9 @@ void lapic_enableintr(void);
|
|||
void lapic_disableintr(void);
|
||||
|
||||
// spinlock.c
|
||||
extern uint32_t kernel_lock;
|
||||
void acquire_spinlock(uint32_t* lock);
|
||||
void release_spinlock(uint32_t* lock);
|
||||
void release_grant_spinlock(uint32_t* lock, int cpu);
|
||||
struct spinlock;
|
||||
void acquire(struct spinlock * lock);
|
||||
void release(struct spinlock * lock);
|
||||
|
||||
// main.c
|
||||
void load_icode(struct proc *p, uint8_t *binary, unsigned size);
|
||||
|
@ -77,6 +76,7 @@ struct fd * fd_alloc();
|
|||
void fd_close(struct fd *);
|
||||
int fd_read(struct fd *fd, char *addr, int n);
|
||||
int fd_write(struct fd *fd, char *addr, int n);
|
||||
void fd_reference(struct fd *fd);
|
||||
|
||||
// ide.c
|
||||
void ide_init(void);
|
||||
|
|
25
fd.c
25
fd.c
|
@ -5,6 +5,9 @@
|
|||
#include "proc.h"
|
||||
#include "defs.h"
|
||||
#include "fd.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
struct spinlock fd_table_lock;
|
||||
|
||||
struct fd fds[NFD];
|
||||
|
||||
|
@ -22,18 +25,24 @@ fd_ualloc()
|
|||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* allocate a file descriptor structure
|
||||
*/
|
||||
struct fd *
|
||||
fd_alloc()
|
||||
{
|
||||
int i;
|
||||
|
||||
acquire(&fd_table_lock);
|
||||
for(i = 0; i < NFD; i++){
|
||||
if(fds[i].type == FD_CLOSED){
|
||||
fds[i].type = FD_NONE;
|
||||
fds[i].count = 1;
|
||||
release(&fd_table_lock);
|
||||
return fds + i;
|
||||
}
|
||||
}
|
||||
release(&fd_table_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -69,8 +78,11 @@ fd_read(struct fd *fd, char *addr, int n)
|
|||
void
|
||||
fd_close(struct fd *fd)
|
||||
{
|
||||
acquire(&fd_table_lock);
|
||||
|
||||
if(fd->count < 1 || fd->type == FD_CLOSED)
|
||||
panic("fd_close");
|
||||
|
||||
fd->count -= 1;
|
||||
|
||||
if(fd->count == 0){
|
||||
|
@ -79,6 +91,19 @@ fd_close(struct fd *fd)
|
|||
} else {
|
||||
panic("fd_close");
|
||||
}
|
||||
fd->count = 0;
|
||||
fd->type = FD_CLOSED;
|
||||
}
|
||||
|
||||
release(&fd_table_lock);
|
||||
}
|
||||
|
||||
void
|
||||
fd_reference(struct fd *fd)
|
||||
{
|
||||
acquire(&fd_table_lock);
|
||||
if(fd->count < 1 || fd->type == FD_CLOSED)
|
||||
panic("fd_reference");
|
||||
fd->count += 1;
|
||||
release(&fd_table_lock);
|
||||
}
|
||||
|
|
19
kalloc.c
19
kalloc.c
|
@ -10,6 +10,9 @@
|
|||
#include "param.h"
|
||||
#include "types.h"
|
||||
#include "defs.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
struct spinlock kalloc_lock;
|
||||
|
||||
struct run {
|
||||
struct run *next;
|
||||
|
@ -54,6 +57,8 @@ kfree(char *cp, int len)
|
|||
for(i = 0; i < len; i++)
|
||||
cp[i] = 1;
|
||||
|
||||
acquire(&kalloc_lock);
|
||||
|
||||
rr = &freelist;
|
||||
while(*rr){
|
||||
struct run *rend = (struct run *) ((char *)(*rr) + (*rr)->len);
|
||||
|
@ -63,13 +68,13 @@ kfree(char *cp, int len)
|
|||
p->len = len + (*rr)->len;
|
||||
p->next = (*rr)->next;
|
||||
*rr = p;
|
||||
return;
|
||||
goto out;
|
||||
}
|
||||
if(pend < *rr){
|
||||
p->len = len;
|
||||
p->next = *rr;
|
||||
*rr = p;
|
||||
return;
|
||||
goto out;
|
||||
}
|
||||
if(p == rend){
|
||||
(*rr)->len += len;
|
||||
|
@ -77,13 +82,16 @@ kfree(char *cp, int len)
|
|||
(*rr)->len += (*rr)->next->len;
|
||||
(*rr)->next = (*rr)->next->next;
|
||||
}
|
||||
return;
|
||||
goto out;
|
||||
}
|
||||
rr = &((*rr)->next);
|
||||
}
|
||||
p->len = len;
|
||||
p->next = 0;
|
||||
*rr = p;
|
||||
|
||||
out:
|
||||
release(&kalloc_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -99,20 +107,25 @@ kalloc(int n)
|
|||
if(n % PAGE)
|
||||
panic("kalloc");
|
||||
|
||||
acquire(&kalloc_lock);
|
||||
|
||||
rr = &freelist;
|
||||
while(*rr){
|
||||
struct run *r = *rr;
|
||||
if(r->len == n){
|
||||
*rr = r->next;
|
||||
release(&kalloc_lock);
|
||||
return (char *) r;
|
||||
}
|
||||
if(r->len > n){
|
||||
char *p = (char *)r + (r->len - n);
|
||||
r->len -= n;
|
||||
release(&kalloc_lock);
|
||||
return p;
|
||||
}
|
||||
rr = &(*rr)->next;
|
||||
}
|
||||
release(&kalloc_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
12
main.c
12
main.c
|
@ -15,8 +15,6 @@ extern char _binary_user1_start[], _binary_user1_size[];
|
|||
extern char _binary_usertests_start[], _binary_usertests_size[];
|
||||
extern char _binary_userfs_start[], _binary_userfs_size[];
|
||||
|
||||
char buf[512];
|
||||
|
||||
int
|
||||
main()
|
||||
{
|
||||
|
@ -24,8 +22,6 @@ main()
|
|||
|
||||
if (acpu) {
|
||||
cprintf("an application processor\n");
|
||||
release_spinlock(&kernel_lock);
|
||||
acquire_spinlock(&kernel_lock);
|
||||
idtinit(); // CPU's idt
|
||||
lapic_init(cpu());
|
||||
lapic_timerinit();
|
||||
|
@ -39,7 +35,6 @@ main()
|
|||
cprintf("\nxV6\n\n");
|
||||
|
||||
pic_init(); // initialize PIC
|
||||
mp_init(); // multiprocessor
|
||||
kinit(); // physical memory allocator
|
||||
tvinit(); // trap vectors
|
||||
idtinit(); // CPU's idt
|
||||
|
@ -61,11 +56,14 @@ main()
|
|||
p->ppid = 0;
|
||||
setupsegs(p);
|
||||
|
||||
mp_init(); // multiprocessor
|
||||
|
||||
// turn on timer and enable interrupts on the local APIC
|
||||
lapic_timerinit();
|
||||
lapic_enableintr();
|
||||
|
||||
// init disk device
|
||||
ide_init();
|
||||
//ide_init();
|
||||
|
||||
// become interruptable
|
||||
sti();
|
||||
|
@ -74,7 +72,9 @@ main()
|
|||
|
||||
load_icode(p, _binary_usertests_start, (unsigned) _binary_usertests_size);
|
||||
//load_icode(p, _binary_userfs_start, (unsigned) _binary_userfs_size);
|
||||
p->state = RUNNABLE;
|
||||
cprintf("loaded userfs\n");
|
||||
|
||||
scheduler();
|
||||
|
||||
return 0;
|
||||
|
|
4
mp.c
4
mp.c
|
@ -391,15 +391,11 @@ mp_init()
|
|||
memmove((void *) APBOOTCODE,_binary_bootother_start,
|
||||
(uint32_t) _binary_bootother_size);
|
||||
|
||||
acquire_spinlock(&kernel_lock);
|
||||
for(c = 0; c < ncpu; c++){
|
||||
if (cpus+c == bcpu) continue;
|
||||
cprintf ("starting processor %d\n", c);
|
||||
release_grant_spinlock(&kernel_lock, c);
|
||||
*(unsigned *)(APBOOTCODE-4) = (unsigned) (cpus[c].mpstack) + MPSTACK; // tell it what to use for %esp
|
||||
*(unsigned *)(APBOOTCODE-8) = (unsigned)&main; // tell it where to jump to
|
||||
lapic_startap(cpus + c, (uint32_t) APBOOTCODE);
|
||||
acquire_spinlock(&kernel_lock);
|
||||
cprintf ("done starting processor %d\n", c);
|
||||
}
|
||||
}
|
||||
|
|
10
pipe.c
10
pipe.c
|
@ -5,6 +5,7 @@
|
|||
#include "proc.h"
|
||||
#include "defs.h"
|
||||
#include "fd.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
#define PIPESIZE 512
|
||||
|
||||
|
@ -13,6 +14,7 @@ struct pipe {
|
|||
int writeopen; // write fd is still open
|
||||
int writep; // next index to write
|
||||
int readp; // next index to read
|
||||
struct spinlock lock;
|
||||
char data[PIPESIZE];
|
||||
};
|
||||
|
||||
|
@ -32,6 +34,7 @@ pipe_alloc(struct fd **fd1, struct fd **fd2)
|
|||
p->writeopen = 1;
|
||||
p->writep = 0;
|
||||
p->readp = 0;
|
||||
memset(&p->lock, 0, sizeof(p->lock));
|
||||
(*fd1)->type = FD_PIPE;
|
||||
(*fd1)->readable = 1;
|
||||
(*fd1)->writeable = 0;
|
||||
|
@ -74,16 +77,21 @@ pipe_write(struct pipe *p, char *addr, int n)
|
|||
{
|
||||
int i;
|
||||
|
||||
acquire(&p->lock);
|
||||
|
||||
for(i = 0; i < n; i++){
|
||||
while(((p->writep + 1) % PIPESIZE) == p->readp){
|
||||
if(p->readopen == 0)
|
||||
return -1;
|
||||
release(&p->lock);
|
||||
wakeup(&p->readp);
|
||||
sleep(&p->writep);
|
||||
acquire(&p->lock);
|
||||
}
|
||||
p->data[p->writep] = addr[i];
|
||||
p->writep = (p->writep + 1) % PIPESIZE;
|
||||
}
|
||||
release(&p->lock);
|
||||
wakeup(&p->readp);
|
||||
return i;
|
||||
}
|
||||
|
@ -99,12 +107,14 @@ pipe_read(struct pipe *p, char *addr, int n)
|
|||
sleep(&p->readp);
|
||||
}
|
||||
|
||||
acquire(&p->lock);
|
||||
for(i = 0; i < n; i++){
|
||||
if(p->readp == p->writep)
|
||||
break;
|
||||
addr[i] = p->data[p->readp];
|
||||
p->readp = (p->readp + 1) % PIPESIZE;
|
||||
}
|
||||
release(&p->lock);
|
||||
wakeup(&p->writep);
|
||||
return i;
|
||||
}
|
||||
|
|
67
proc.c
67
proc.c
|
@ -5,6 +5,9 @@
|
|||
#include "fd.h"
|
||||
#include "proc.h"
|
||||
#include "defs.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
struct spinlock proc_table_lock;
|
||||
|
||||
struct proc proc[NPROC];
|
||||
struct proc *curproc[NCPU];
|
||||
|
@ -43,6 +46,7 @@ extern void trapret();
|
|||
/*
|
||||
* internal fork(). does not copy kernel stack; instead,
|
||||
* sets up the stack to return as if from system call.
|
||||
* caller must set state to RUNNABLE.
|
||||
*/
|
||||
struct proc *
|
||||
newproc()
|
||||
|
@ -51,11 +55,18 @@ newproc()
|
|||
struct proc *op;
|
||||
int fd;
|
||||
|
||||
for(np = &proc[1]; np < &proc[NPROC]; np++)
|
||||
if(np->state == UNUSED)
|
||||
acquire(&proc_table_lock);
|
||||
|
||||
for(np = &proc[1]; np < &proc[NPROC]; np++){
|
||||
if(np->state == UNUSED){
|
||||
np->state = EMBRYO;
|
||||
break;
|
||||
if(np >= &proc[NPROC])
|
||||
}
|
||||
}
|
||||
if(np >= &proc[NPROC]){
|
||||
release(&proc_table_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// copy from proc[0] if we're bootstrapping
|
||||
op = curproc[cpu()];
|
||||
|
@ -64,6 +75,9 @@ newproc()
|
|||
|
||||
np->pid = next_pid++;
|
||||
np->ppid = op->pid;
|
||||
|
||||
release(&proc_table_lock);
|
||||
|
||||
np->sz = op->sz;
|
||||
np->mem = kalloc(op->sz);
|
||||
if(np->mem == 0)
|
||||
|
@ -72,6 +86,7 @@ newproc()
|
|||
np->kstack = kalloc(KSTACKSIZE);
|
||||
if(np->kstack == 0){
|
||||
kfree(np->mem, op->sz);
|
||||
np->state = UNUSED;
|
||||
return 0;
|
||||
}
|
||||
setupsegs(np);
|
||||
|
@ -91,11 +106,9 @@ newproc()
|
|||
for(fd = 0; fd < NOFILE; fd++){
|
||||
np->fds[fd] = op->fds[fd];
|
||||
if(np->fds[fd])
|
||||
np->fds[fd]->count += 1;
|
||||
fd_reference(np->fds[fd]);
|
||||
}
|
||||
|
||||
np->state = RUNNABLE;
|
||||
|
||||
cprintf("newproc %x\n", np);
|
||||
|
||||
return np;
|
||||
|
@ -111,11 +124,20 @@ scheduler(void)
|
|||
cpus[cpu()].lastproc = &proc[0];
|
||||
|
||||
setjmp(&cpus[cpu()].jmpbuf);
|
||||
|
||||
|
||||
op = curproc[cpu()];
|
||||
if(op){
|
||||
if(op->newstate <= 0 || op->newstate > ZOMBIE)
|
||||
panic("scheduler");
|
||||
op->state = op->newstate;
|
||||
op->newstate = -1;
|
||||
}
|
||||
|
||||
// find a runnable process and switch to it
|
||||
curproc[cpu()] = 0;
|
||||
np = cpus[cpu()].lastproc + 1;
|
||||
while(1){
|
||||
acquire(&proc_table_lock);
|
||||
for(i = 0; i < NPROC; i++){
|
||||
if(np >= &proc[NPROC])
|
||||
np = &proc[0];
|
||||
|
@ -123,20 +145,20 @@ scheduler(void)
|
|||
break;
|
||||
np++;
|
||||
}
|
||||
if(i < NPROC)
|
||||
|
||||
if(i < NPROC){
|
||||
np->state = RUNNING;
|
||||
release(&proc_table_lock);
|
||||
break;
|
||||
// cprintf("swtch %d: nothing to run %d %d\n",
|
||||
// cpu(), proc[1].state, proc[2].state);
|
||||
release_spinlock(&kernel_lock);
|
||||
acquire_spinlock(&kernel_lock);
|
||||
}
|
||||
|
||||
release(&proc_table_lock);
|
||||
np = &proc[0];
|
||||
}
|
||||
|
||||
cpus[cpu()].lastproc = np;
|
||||
curproc[cpu()] = np;
|
||||
|
||||
np->state = RUNNING;
|
||||
|
||||
// h/w sets busy bit in TSS descriptor sometimes, and faults
|
||||
// if it's set in LTR. so clear tss descriptor busy bit.
|
||||
np->gdt[SEG_TSS].sd_type = STS_T32A;
|
||||
|
@ -155,11 +177,12 @@ scheduler(void)
|
|||
// give up the cpu by switching to the scheduler,
|
||||
// which runs on the per-cpu stack.
|
||||
void
|
||||
swtch(void)
|
||||
swtch(int newstate)
|
||||
{
|
||||
struct proc *p = curproc[cpu()];
|
||||
if(p == 0)
|
||||
panic("swtch");
|
||||
p->newstate = newstate; // basically an argument to scheduler()
|
||||
if(setjmp(&p->jmpbuf) == 0)
|
||||
longjmp(&cpus[cpu()].jmpbuf);
|
||||
}
|
||||
|
@ -171,8 +194,7 @@ sleep(void *chan)
|
|||
if(p == 0)
|
||||
panic("sleep");
|
||||
p->chan = chan;
|
||||
p->state = WAITING;
|
||||
swtch();
|
||||
swtch(WAITING);
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -180,9 +202,11 @@ wakeup(void *chan)
|
|||
{
|
||||
struct proc *p;
|
||||
|
||||
acquire(&proc_table_lock);
|
||||
for(p = proc; p < &proc[NPROC]; p++)
|
||||
if(p->state == WAITING && p->chan == chan)
|
||||
p->state = RUNNABLE;
|
||||
release(&proc_table_lock);
|
||||
}
|
||||
|
||||
// give up the CPU but stay marked as RUNNABLE
|
||||
|
@ -191,8 +215,7 @@ yield()
|
|||
{
|
||||
if(curproc[cpu()] == 0 || curproc[cpu()]->state != RUNNING)
|
||||
panic("yield");
|
||||
curproc[cpu()]->state = RUNNABLE;
|
||||
swtch();
|
||||
swtch(RUNNABLE);
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -211,7 +234,7 @@ proc_exit()
|
|||
}
|
||||
}
|
||||
|
||||
cp->state = ZOMBIE;
|
||||
acquire(&proc_table_lock);
|
||||
|
||||
// wake up parent
|
||||
for(p = proc; p < &proc[NPROC]; p++)
|
||||
|
@ -223,6 +246,8 @@ proc_exit()
|
|||
if(p->ppid == cp->pid)
|
||||
p->pid = 1;
|
||||
|
||||
acquire(&proc_table_lock);
|
||||
|
||||
// switch into scheduler
|
||||
swtch();
|
||||
swtch(ZOMBIE);
|
||||
}
|
||||
|
|
5
proc.h
5
proc.h
|
@ -33,11 +33,14 @@ struct jmpbuf {
|
|||
int jb_eip;
|
||||
};
|
||||
|
||||
enum proc_state { UNUSED, EMBRYO, WAITING, RUNNABLE, RUNNING, ZOMBIE };
|
||||
|
||||
struct proc{
|
||||
char *mem; // start of process's physical memory
|
||||
unsigned sz; // total size of mem, including kernel stack
|
||||
char *kstack; // kernel stack, separate from mem so it doesn't move
|
||||
enum { UNUSED, RUNNABLE, WAITING, ZOMBIE, RUNNING } state;
|
||||
enum proc_state state;
|
||||
enum proc_state newstate; // desired state after swtch()
|
||||
int pid;
|
||||
int ppid;
|
||||
void *chan; // sleep
|
||||
|
|
61
spinlock.c
61
spinlock.c
|
@ -2,51 +2,50 @@
|
|||
#include "defs.h"
|
||||
#include "x86.h"
|
||||
#include "mmu.h"
|
||||
#include "param.h"
|
||||
#include "proc.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
#define LOCK_FREE -1
|
||||
#define DEBUG 0
|
||||
|
||||
uint32_t kernel_lock = LOCK_FREE;
|
||||
|
||||
int getcallerpc(void *v) {
|
||||
return ((int*)v)[-1];
|
||||
}
|
||||
|
||||
// lock = LOCK_FREE if free, else = cpu_id of owner CPU
|
||||
void
|
||||
acquire_spinlock(uint32_t* lock)
|
||||
acquire(struct spinlock * lock)
|
||||
{
|
||||
int cpu_id = cpu();
|
||||
struct proc * cp = curproc[cpu()];
|
||||
|
||||
// on a real machine there would be a memory barrier here
|
||||
if(DEBUG) cprintf("cpu%d: acquiring at %x\n", cpu_id, getcallerpc(&lock));
|
||||
cli();
|
||||
if (*lock == cpu_id)
|
||||
panic("recursive lock");
|
||||
|
||||
while ( cmpxchg(LOCK_FREE, cpu_id, lock) != cpu_id ) { ; }
|
||||
if(DEBUG) cprintf("cpu%d: acquired at %x\n", cpu_id, getcallerpc(&lock));
|
||||
if(DEBUG) cprintf("cpu%d: acquiring at %x\n", cpu(), getcallerpc(&lock));
|
||||
if (cp && lock->p == cp && lock->locked){
|
||||
lock->count += 1;
|
||||
} else {
|
||||
cli();
|
||||
while ( cmpxchg(0, 1, &lock->locked) != 1 ) { ; }
|
||||
lock->locker_pc = getcallerpc(&lock);
|
||||
lock->count = 1;
|
||||
lock->p = cp;
|
||||
}
|
||||
if(DEBUG) cprintf("cpu%d: acquired at %x\n", cpu(), getcallerpc(&lock));
|
||||
}
|
||||
|
||||
void
|
||||
release_spinlock(uint32_t* lock)
|
||||
release(struct spinlock * lock)
|
||||
{
|
||||
int cpu_id = cpu();
|
||||
if(DEBUG) cprintf ("cpu%d: releasing at %x\n", cpu_id, getcallerpc(&lock));
|
||||
if (*lock != cpu_id)
|
||||
panic("release_spinlock: releasing a lock that i don't own\n");
|
||||
*lock = LOCK_FREE;
|
||||
// on a real machine there would be a memory barrier here
|
||||
sti();
|
||||
}
|
||||
struct proc * cp = curproc[cpu()];
|
||||
|
||||
void
|
||||
release_grant_spinlock(uint32_t* lock, int c)
|
||||
{
|
||||
int cpu_id = cpu();
|
||||
if(DEBUG) cprintf ("cpu%d: release_grant to %d at %x\n", cpu_id, c, getcallerpc(&lock));
|
||||
if (*lock != cpu_id)
|
||||
panic("release_spinlock: releasing a lock that i don't own\n");
|
||||
*lock = c;
|
||||
}
|
||||
if(DEBUG) cprintf ("cpu%d: releasing at %x\n", cpu(), getcallerpc(&lock));
|
||||
|
||||
if(lock->p != cp || lock->count < 1 || lock->locked != 1)
|
||||
panic("release");
|
||||
|
||||
lock->count -= 1;
|
||||
if(lock->count < 1){
|
||||
lock->p = 0;
|
||||
cmpxchg(1, 0, &lock->locked);
|
||||
sti();
|
||||
// on a real machine there would be a memory barrier here
|
||||
}
|
||||
}
|
||||
|
|
10
syscall.c
10
syscall.c
|
@ -6,6 +6,7 @@
|
|||
#include "x86.h"
|
||||
#include "traps.h"
|
||||
#include "syscall.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
/*
|
||||
* User code makes a system call with INT T_SYSCALL.
|
||||
|
@ -18,6 +19,8 @@
|
|||
* Return value? Error indication? Errno?
|
||||
*/
|
||||
|
||||
extern struct spinlock proc_table_lock;
|
||||
|
||||
/*
|
||||
* fetch 32 bits from a user-supplied pointer.
|
||||
* returns 1 if addr was OK, 0 if illegal.
|
||||
|
@ -149,6 +152,7 @@ sys_fork()
|
|||
struct proc *np;
|
||||
|
||||
np = newproc();
|
||||
np->state = RUNNABLE;
|
||||
return np->pid;
|
||||
}
|
||||
|
||||
|
@ -170,18 +174,21 @@ sys_wait()
|
|||
|
||||
while(1){
|
||||
any = 0;
|
||||
acquire(&proc_table_lock);
|
||||
for(p = proc; p < &proc[NPROC]; p++){
|
||||
if(p->state == ZOMBIE && p->ppid == cp->pid){
|
||||
kfree(p->mem, p->sz);
|
||||
kfree(p->kstack, KSTACKSIZE);
|
||||
pid = p->pid;
|
||||
p->state = UNUSED;
|
||||
release(&proc_table_lock);
|
||||
cprintf("%x collected %x\n", cp, p);
|
||||
return pid;
|
||||
}
|
||||
if(p->state != UNUSED && p->ppid == cp->pid)
|
||||
any = 1;
|
||||
}
|
||||
release(&proc_table_lock);
|
||||
if(any == 0){
|
||||
cprintf("%x nothing to wait for\n", cp);
|
||||
return -1;
|
||||
|
@ -232,14 +239,17 @@ sys_kill()
|
|||
struct proc *p;
|
||||
|
||||
fetcharg(0, &pid);
|
||||
acquire(&proc_table_lock);
|
||||
for(p = proc; p < &proc[NPROC]; p++){
|
||||
if(p->pid == pid && p->state != UNUSED){
|
||||
p->killed = 1;
|
||||
if(p->state == WAITING)
|
||||
p->state = RUNNABLE;
|
||||
release(&proc_table_lock);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
release(&proc_table_lock);
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
|
10
trap.c
10
trap.c
|
@ -5,6 +5,7 @@
|
|||
#include "defs.h"
|
||||
#include "x86.h"
|
||||
#include "traps.h"
|
||||
#include "syscall.h"
|
||||
|
||||
struct Gatedesc idt[256];
|
||||
struct Pseudodesc idt_pd = { 0, sizeof(idt) - 1, (unsigned) &idt };
|
||||
|
@ -35,12 +36,6 @@ trap(struct Trapframe *tf)
|
|||
{
|
||||
int v = tf->tf_trapno;
|
||||
|
||||
if(tf->tf_cs == 0x8 && kernel_lock == cpu())
|
||||
cprintf("cpu %d: trap %d from %x:%x with lock=%d\n",
|
||||
cpu(), v, tf->tf_cs, tf->tf_eip, kernel_lock);
|
||||
|
||||
acquire_spinlock(&kernel_lock); // released in trapret in trapasm.S
|
||||
|
||||
if(v == T_SYSCALL){
|
||||
struct proc *cp = curproc[cpu()];
|
||||
if(cp == 0)
|
||||
|
@ -55,7 +50,8 @@ trap(struct Trapframe *tf)
|
|||
panic("trap ret but not RUNNING");
|
||||
if(tf != cp->tf)
|
||||
panic("trap ret wrong tf");
|
||||
if(read_esp() < (unsigned)cp->kstack || read_esp() >= (unsigned)cp->kstack + KSTACKSIZE)
|
||||
if(read_esp() < (unsigned)cp->kstack ||
|
||||
read_esp() >= (unsigned)cp->kstack + KSTACKSIZE)
|
||||
panic("trap ret esp wrong");
|
||||
if(cp->killed)
|
||||
proc_exit();
|
||||
|
|
|
@ -22,10 +22,6 @@ alltraps:
|
|||
* expects ESP to point to a Trapframe
|
||||
*/
|
||||
trapret:
|
||||
pushl $kernel_lock
|
||||
call release_spinlock
|
||||
addl $0x4, %esp
|
||||
|
||||
popal
|
||||
popl %es
|
||||
popl %ds
|
||||
|
|
|
@ -93,8 +93,8 @@ preempt()
|
|||
main()
|
||||
{
|
||||
puts("usertests starting\n");
|
||||
//pipe1();
|
||||
preempt();
|
||||
pipe1();
|
||||
//preempt();
|
||||
|
||||
while(1)
|
||||
;
|
||||
|
|
Loading…
Reference in a new issue