wrap long lines

This commit is contained in:
rsc 2006-09-06 19:08:14 +00:00
parent db8fb62e4d
commit 0cfc7290e8
18 changed files with 181 additions and 154 deletions

12
asm.h
View file

@ -11,9 +11,9 @@
.byte (((base) >> 16) & 0xff), (0x90 | (type)), \
(0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff)
#define STA_X 0x8 // Executable segment
#define STA_E 0x4 // Expand down (non-executable segments)
#define STA_C 0x4 // Conforming code segment (executable only)
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
#define STA_A 0x1 // Accessed
#define STA_X 0x8 // Executable segment
#define STA_E 0x4 // Expand down (non-executable segments)
#define STA_C 0x4 // Conforming code segment (executable only)
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
#define STA_A 0x1 // Accessed

3
bio.c
View file

@ -41,7 +41,8 @@ getblk(uint dev, uint sector)
for(;;){
for(b = bufhead.next; b != &bufhead; b = b->next)
if((b->flags & (B_BUSY|B_VALID)) && b->dev == dev && b->sector == sector)
if((b->flags & (B_BUSY|B_VALID)) &&
b->dev == dev && b->sector == sector)
break;
if(b != &bufhead){

View file

@ -4,7 +4,7 @@
.set PROT_MODE_DSEG,0x10 # data segment selector
.set CR0_PE_ON,0x1 # protected mode enable flag
###################################################################################
#########################################################################
# ENTRY POINT
# This code should be stored in the first sector of the hard disk.
# After the BIOS initializes the hardware on startup or system reset,
@ -15,7 +15,7 @@
#
# This code switches into 32-bit protected mode so that all of
# memory can accessed, then calls into C.
###################################################################################
#########################################################################
.globl start # Entry point
start:
@ -32,13 +32,13 @@ start:
# Set up the stack pointer, growing downward from 0x7c00.
movw $start,%sp # Stack Pointer
#### Enable A20:
#### For fascinating historical reasons (related to the fact that
#### the earliest 8086-based PCs could only address 1MB of physical memory
#### and subsequent 80286-based PCs wanted to retain maximum compatibility),
#### physical address line 20 is tied to low when the machine boots.
#### Obviously this a bit of a drag for us, especially when trying to
#### address memory above 1MB. This code undoes this.
# Enable A20:
# For fascinating historical reasons (related to the fact that
# the earliest 8086-based PCs could only address 1MB of physical
# memory and subsequent 80286-based PCs wanted to retain maximum
# compatibility), physical address line 20 is tied to low when the
# machine boots. Obviously this a bit of a drag for us, especially
# when trying to address memory above 1MB. This code undoes this.
seta20.1:
inb $0x64,%al # Get status
@ -54,22 +54,22 @@ seta20.2:
movb $0xdf,%al # Enable
outb %al,$0x60 # A20
#### Switch from real to protected mode
#### The descriptors in our GDT allow all physical memory to be accessed.
#### Furthermore, the descriptors have base addresses of 0, so that the
#### segment translation is a NOP, ie. virtual addresses are identical to
#### their physical addresses. With this setup, immediately after
#### enabling protected mode it will still appear to this code
#### that it is running directly on physical memory with no translation.
#### This initial NOP-translation setup is required by the processor
#### to ensure that the transition to protected mode occurs smoothly.
# Switch from real to protected mode
# The descriptors in our GDT allow all physical memory to be accessed.
# Furthermore, the descriptors have base addresses of 0, so that the
# segment translation is a NOP, ie. virtual addresses are identical to
# their physical addresses. With this setup, immediately after
# enabling protected mode it will still appear to this code
# that it is running directly on physical memory with no translation.
# This initial NOP-translation setup is required by the processor
# to ensure that the transition to protected mode occurs smoothly.
real_to_prot:
cli # Mandatory since we dont set up an IDT
lgdt gdtdesc # load GDT -- mandatory in protected mode
movl %cr0, %eax # turn on protected mode
orl $CR0_PE_ON, %eax #
movl %eax, %cr0 #
cli # Mandatory since we dont set up an IDT
lgdt gdtdesc # load GDT -- mandatory in protected mode
movl %cr0, %eax # turn on protected mode
orl $CR0_PE_ON, %eax #
movl %eax, %cr0 #
### CPU magic: jump to relocation, flush prefetch queue, and reload %cs
### Has the effect of just jmp to the next instruction, but simultaneous
### loads CS with $PROT_MODE_CSEG.

View file

@ -1,6 +1,3 @@
#include "types.h"
#include "elf.h"
#include "x86.h"
// This a dirt simple boot loader, whose sole job is to boot
// an elf kernel image from the first IDE hard disk.
//
@ -25,7 +22,12 @@
// * control starts in bootloader.S -- which sets up protected mode,
// and a stack so C code then run, then calls cmain()
//
// * cmain() in this file takes over, reads in the kernel and jumps to it.
// * cmain() in this file takes over,
// reads in the kernel and jumps to it.
#include "types.h"
#include "elf.h"
#include "x86.h"
#define SECTSIZE 512
#define ELFHDR ((struct elfhdr*) 0x10000) // scratch space

View file

@ -1,20 +1,17 @@
#include "asm.h"
/*
* Start an Application Processor. This must be placed on a 4KB boundary
* somewhere in the 1st MB of conventional memory (APBOOTSTRAP). However,
* due to some shortcuts below it's restricted further to within the 1st
* 64KB. The AP starts in real-mode, with
* CS selector set to the startup memory address/16;
* CS base set to startup memory address;
* CS limit set to 64KB;
* CPL and IP set to 0.
*
* mp.c causes each non-boot CPU in turn to jump to start.
* mp.c puts the correct %esp in start-4, and the place to jump
* to in start-8.
*
*/
# Start an Application Processor. This must be placed on a 4KB boundary
# somewhere in the 1st MB of conventional memory (APBOOTSTRAP). However,
# due to some shortcuts below it's restricted further to within the 1st
# 64KB. The AP starts in real-mode, with
# CS selector set to the startup memory address/16;
# CS base set to startup memory address;
# CS limit set to 64KB;
# CPL and IP set to 0.
#
# mp.c causes each non-boot CPU in turn to jump to start.
# mp.c puts the correct %esp in start-4, and the place to jump
# to in start-8.
.set PROT_MODE_CSEG,0x8 # code segment selector
.set PROT_MODE_DSEG,0x10 # data segment selector
@ -22,39 +19,40 @@
.globl start
start:
.code16 # This runs in real mode
cli # Disable interrupts
cld # String operations increment
.code16 # This runs in real mode
cli # Disable interrupts
cld # String operations increment
# Set up the important data segment registers (DS, ES, SS).
xorw %ax,%ax # Segment number zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment
xorw %ax,%ax # Segment number zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment
# Set up the stack pointer, growing downward from 0x7000-8.
movw $start-8,%sp # Stack Pointer
movw $start-8,%sp # Stack Pointer
#### Switch from real to protected mode
#### The descriptors in our GDT allow all physical memory to be accessed.
#### Furthermore, the descriptors have base addresses of 0, so that the
#### segment translation is a NOP, ie. virtual addresses are identical to
#### their physical addresses. With this setup, immediately after
#### enabling protected mode it will still appear to this code
#### that it is running directly on physical memory with no translation.
#### This initial NOP-translation setup is required by the processor
#### to ensure that the transition to protected mode occurs smoothly.
# Switch from real to protected mode
# The descriptors in our GDT allow all physical memory to be accessed.
# Furthermore, the descriptors have base addresses of 0, so that the
# segment translation is a NOP, ie. virtual addresses are identical to
# their physical addresses. With this setup, immediately after
# enabling protected mode it will still appear to this code
# that it is running directly on physical memory with no translation.
# This initial NOP-translation setup is required by the processor
# to ensure that the transition to protected mode occurs smoothly.
lgdt gdtdesc # load GDT -- mandatory in protected mode
movl %cr0, %eax # turn on protected mode
orl $CR0_PE_ON, %eax #
movl %eax, %cr0 #
### CPU magic: jump to relocation, flush prefetch queue, and reload %cs
### Has the effect of just jmp to the next instruction, but simultaneous
### loads CS with $PROT_MODE_CSEG.
lgdt gdtdesc # load GDT -- mandatory in protected mode
movl %cr0, %eax # turn on protected mode
orl $CR0_PE_ON, %eax #
movl %eax, %cr0 #
# CPU magic: jump to relocation, flush prefetch queue, and reload %cs
# Has the effect of just jmp to the next instruction, but simultaneous
# loads CS with $PROT_MODE_CSEG.
ljmp $PROT_MODE_CSEG, $protcseg
#### we are in 32-bit protected mode (hence the .code32)
# We are now in 32-bit protected mode (hence the .code32)
.code32
protcseg:
# Set up the protected-mode data segment registers
@ -69,7 +67,7 @@ protcseg:
movl start-4, %esp
jmp *%eax
.p2align 2 # force 4 byte alignment
.p2align 2 # force 4 byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg

3
fs.c
View file

@ -450,7 +450,8 @@ writei(struct inode *ip, char *addr, uint off, uint n)
// NAMEI_DELETE: return locked parent inode, offset of dirent in *ret_off.
// return 0 if name doesn't exist.
struct inode*
namei(char *path, int mode, uint *ret_off, char **ret_last, struct inode **ret_ip)
namei(char *path, int mode, uint *ret_off,
char **ret_last, struct inode **ret_ip)
{
struct inode *dp;
struct proc *p = curproc[cpu()];

View file

@ -1,5 +1,5 @@
#define IO_APIC_BASE 0xFEC00000 // default physical locations of an IO APIC
#define IOAPIC_WINDOW 0x10 // window register offset
#define IO_APIC_BASE 0xFEC00000 // Default phys addr of IO APIC
#define IOAPIC_WINDOW 0x10 // Window register offset
// Constants relating to APIC ID registers
#define APIC_ID_MASK 0xff000000

26
lapic.c
View file

@ -106,7 +106,8 @@ void
lapic_timerinit(void)
{
lapic_write(LAPIC_TDCR, LAPIC_X1);
lapic_write(LAPIC_TIMER, LAPIC_CLKIN | LAPIC_PERIODIC | (IRQ_OFFSET + IRQ_TIMER));
lapic_write(LAPIC_TIMER, LAPIC_CLKIN | LAPIC_PERIODIC |
(IRQ_OFFSET + IRQ_TIMER));
lapic_write(LAPIC_TCCR, 10000000);
lapic_write(LAPIC_TICR, 10000000);
}
@ -122,17 +123,19 @@ lapic_init(int c)
{
uint r, lvt;
lapic_write(LAPIC_DFR, 0xFFFFFFFF); // set destination format register
r = (lapic_read(LAPIC_ID)>>24) & 0xFF; // read APIC ID
lapic_write(LAPIC_LDR, (1<<r)<<24); // set logical destination register to r
lapic_write(LAPIC_TPR, 0xFF); // no interrupts for now
lapic_write(LAPIC_SVR, LAPIC_ENABLE|(IRQ_OFFSET+IRQ_SPURIOUS)); // enable APIC
lapic_write(LAPIC_DFR, 0xFFFFFFFF); // Set dst format register
r = (lapic_read(LAPIC_ID)>>24) & 0xFF; // Read APIC ID
lapic_write(LAPIC_LDR, (1<<r)<<24); // Set logical dst register to r
lapic_write(LAPIC_TPR, 0xFF); // No interrupts for now
// Enable APIC
lapic_write(LAPIC_SVR, LAPIC_ENABLE|(IRQ_OFFSET+IRQ_SPURIOUS));
// In virtual wire mode, set up the LINT0 and LINT1 as follows:
lapic_write(LAPIC_LINT0, APIC_IMASK | APIC_EXTINT);
lapic_write(LAPIC_LINT1, APIC_IMASK | APIC_NMI);
lapic_write(LAPIC_EOI, 0); // acknowledge any outstanding interrupts.
lapic_write(LAPIC_EOI, 0); // Ack any outstanding interrupts.
lvt = (lapic_read(LAPIC_VER)>>16) & 0xFF;
if(lvt >= 4)
@ -143,7 +146,8 @@ lapic_init(int c)
// Issue an INIT Level De-Assert to synchronise arbitration ID's.
lapic_write(LAPIC_ICRHI, 0);
lapic_write(LAPIC_ICRLO, LAPIC_ALLINC|APIC_LEVEL|LAPIC_DEASSERT|APIC_INIT);
lapic_write(LAPIC_ICRLO, LAPIC_ALLINC|APIC_LEVEL|
LAPIC_DEASSERT|APIC_INIT);
while(lapic_read(LAPIC_ICRLO) & APIC_DELIVS)
;
}
@ -181,10 +185,12 @@ lapic_startap(uchar apicid, int v)
crhi = apicid<<24;
lapic_write(LAPIC_ICRHI, crhi);
lapic_write(LAPIC_ICRLO, LAPIC_FIELD|APIC_LEVEL|LAPIC_ASSERT|APIC_INIT);
lapic_write(LAPIC_ICRLO, LAPIC_FIELD|APIC_LEVEL|
LAPIC_ASSERT|APIC_INIT);
while(j++ < 10000) {;}
lapic_write(LAPIC_ICRLO, LAPIC_FIELD|APIC_LEVEL|LAPIC_DEASSERT|APIC_INIT);
lapic_write(LAPIC_ICRLO, LAPIC_FIELD|APIC_LEVEL|
LAPIC_DEASSERT|APIC_INIT);
while(j++ < 1000000) {;}

2
ls.c
View file

@ -58,7 +58,7 @@ main(int argc, char *argv[])
case T_DIR:
sz = st.st_size;
for(off = 0; off < sz; off += sizeof(struct dirent)) {
if(read(fd, &dirent, sizeof(struct dirent)) != sizeof(struct dirent)) {
if(read(fd, &dirent, sizeof dirent) != sizeof dirent) {
printf(1, "ls: read error\n");
break;
}

41
mmu.h
View file

@ -1,4 +1,5 @@
// This file contains definitions for the x86 memory management unit (MMU).
// This file contains definitions for the
// x86 memory management unit (MMU).
// Eflags register
#define FL_CF 0x00000001 // Carry Flag
@ -41,7 +42,7 @@ struct segdesc {
};
// Null segment
#define SEG_NULL (struct segdesc){ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
#define SEG_NULL (struct segdesc){ 0,0,0,0,0,0,0,0,0,0,0,0,0 }
// Normal segment
#define SEG(type, base, lim, dpl) (struct segdesc) \
@ -55,26 +56,26 @@ struct segdesc {
(uint) (base) >> 24 }
// Application segment type bits
#define STA_X 0x8 // Executable segment
#define STA_E 0x4 // Expand down (non-executable segments)
#define STA_C 0x4 // Conforming code segment (executable only)
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
#define STA_A 0x1 // Accessed
#define STA_X 0x8 // Executable segment
#define STA_E 0x4 // Expand down (non-executable segments)
#define STA_C 0x4 // Conforming code segment (executable only)
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
#define STA_A 0x1 // Accessed
// System segment type bits
#define STS_T16A 0x1 // Available 16-bit TSS
#define STS_LDT 0x2 // Local Descriptor Table
#define STS_T16B 0x3 // Busy 16-bit TSS
#define STS_CG16 0x4 // 16-bit Call Gate
#define STS_TG 0x5 // Task Gate / Coum Transmitions
#define STS_IG16 0x6 // 16-bit Interrupt Gate
#define STS_TG16 0x7 // 16-bit Trap Gate
#define STS_T32A 0x9 // Available 32-bit TSS
#define STS_T32B 0xB // Busy 32-bit TSS
#define STS_CG32 0xC // 32-bit Call Gate
#define STS_IG32 0xE // 32-bit Interrupt Gate
#define STS_TG32 0xF // 32-bit Trap Gate
#define STS_T16A 0x1 // Available 16-bit TSS
#define STS_LDT 0x2 // Local Descriptor Table
#define STS_T16B 0x3 // Busy 16-bit TSS
#define STS_CG16 0x4 // 16-bit Call Gate
#define STS_TG 0x5 // Task Gate / Coum Transmitions
#define STS_IG16 0x6 // 16-bit Interrupt Gate
#define STS_TG16 0x7 // 16-bit Trap Gate
#define STS_T32A 0x9 // Available 32-bit TSS
#define STS_T32B 0xB // Busy 32-bit TSS
#define STS_CG32 0xC // 32-bit Call Gate
#define STS_IG32 0xE // 32-bit Interrupt Gate
#define STS_TG32 0xF // 32-bit Trap Gate
// Task state segment format
struct taskstate {

24
mp.c
View file

@ -174,11 +174,12 @@ mp_init(void)
}
}
if(mp->imcrp) { // it appears that bochs doesn't support IMCR, and code won't run
outb(0x22, 0x70); // select IMCR
byte = inb(0x23); // current contents
byte |= 0x01; // mask external INTR
outb(0x23, byte); // disconnect 8259s/NMI
if(mp->imcrp) {
// It appears that Bochs doesn't support IMCR, so code won't run.
outb(0x22, 0x70); // Select IMCR
byte = inb(0x23); // Current contents
byte |= 0x01; // Mask external INTR
outb(0x23, byte); // Disconnect 8259s/NMI
}
}
@ -204,11 +205,20 @@ mp_startthem(void)
(uint) _binary_bootother_size);
for(c = 0; c < ncpu; c++){
// Our current cpu has already started.
if(c == cpu())
continue;
*(uint*)(APBOOTCODE-4) = (uint) (cpus[c].mpstack) + MPSTACK; // tell it what to use for %esp
*(uint*)(APBOOTCODE-8) = (uint)mpmain; // tell it where to jump to
// Set target %esp
*(uint*)(APBOOTCODE-4) = (uint) (cpus[c].mpstack) + MPSTACK;
// Set target %eip
*(uint*)(APBOOTCODE-8) = (uint)mpmain;
// Go!
lapic_startap(cpus[c].apicid, (uint) APBOOTCODE);
// Wait for cpu to get through bootstrap.
while(cpus[c].booted == 0)
;
}

10
mp.h
View file

@ -2,11 +2,11 @@
struct mp { // floating pointer
uchar signature[4]; // "_MP_"
void *physaddr; // physical address of MP configuration table
void *physaddr; // phys addr of MP config table
uchar length; // 1
uchar specrev; // [14]
uchar checksum; // all bytes must add up to 0
uchar type; // MP system configuration type
uchar type; // MP system config type
uchar imcrp;
uchar reserved[3];
};
@ -17,10 +17,10 @@ struct mpctb { // configuration table header
uchar version; // [14]
uchar checksum; // all bytes must add up to 0
uchar product[20]; // product id
uint *oemtable; // OEM table pointer
uint *oemtable; // OEM table pointer
ushort oemlength; // OEM table length
ushort entry; // entry count
uint *lapicaddr; // address of local APIC
uint *lapicaddr; // address of local APIC
ushort xlength; // extended table length
uchar xchecksum; // extended table checksum
uchar reserved;
@ -76,7 +76,7 @@ enum { // table entry types
MPBP = 0x02, // bootstrap processor
// PCMPiointr and PCMPlintr flags
MPPOMASK = 0x03, // polarity conforms to specifications of bus
MPPOMASK = 0x03, // polarity conforms to bus specs
MPHIGH = 0x01, // active high
MPLOW = 0x03, // active low
MPELMASK = 0x0C, // trigger mode of APIC input signals

View file

@ -41,8 +41,8 @@ pic_init(void)
// ICW2: Vector offset
outb(IO_PIC1+1, IRQ_OFFSET);
// ICW3: bit mask of IR lines connected to slave PICs (master PIC),
// 3-bit No of IR line at which slave connects to master(slave PIC).
// ICW3: (master PIC) bit mask of IR lines connected to slaves
// (slave PIC) 3-bit # of slave's connection to master
outb(IO_PIC1+1, 1<<IRQ_SLAVE);
// ICW4: 000nbmap

View file

@ -21,10 +21,13 @@ getcallerpcs(void *v, uint pcs[])
{
uint *ebp = (uint*)v - 2;
int i;
for(i = 0; i < 10 && ebp && ebp != (uint*)0xffffffff; ebp = (uint*)*ebp, i++){
pcs[i] = *(ebp + 1);
for(i = 0; i < 10; i++){
if(ebp == 0 || ebp == (uint*)0xffffffff)
break;
pcs[i] = ebp[1]; // saved %eip
ebp = (uint*)ebp[0]; // saved %ebp
}
for( ; i < 10; i++)
for(; i < 10; i++)
pcs[i] = 0;
}

View file

@ -58,7 +58,9 @@ sys_write(void)
uint addr;
struct proc *p = curproc[cpu()];
if(fetcharg(0, &fd) < 0 || fetcharg(1, &addr) < 0 || fetcharg(2, &n) < 0)
if(fetcharg(0, &fd) < 0 ||
fetcharg(1, &addr) < 0 ||
fetcharg(2, &n) < 0)
return -1;
if(fd < 0 || fd >= NOFILE)
return -1;
@ -78,7 +80,9 @@ sys_read(void)
uint addr;
struct proc *p = curproc[cpu()];
if(fetcharg(0, &fd) < 0 || fetcharg(1, &addr) < 0 || fetcharg(2, &n) < 0)
if(fetcharg(0, &fd) < 0 ||
fetcharg(1, &addr) < 0 ||
fetcharg(2, &n) < 0)
return -1;
if(fd < 0 || fd >= NOFILE)
return -1;

4
trap.c
View file

@ -8,7 +8,7 @@
#include "syscall.h"
struct gatedesc idt[256];
extern uint vectors[]; // in vectors.S: array of 256 entry point addresses
extern uint vectors[]; // in vectors.S: array of 256 entry pointers
extern void trapenter(void);
extern void trapenter1(void);
@ -85,7 +85,7 @@ trap(struct trapframe *tf)
}
if(curproc[cpu()]) {
cprintf("pid %d: unhandled trap %d on cpu %d eip %x---terminate process\n",
cprintf("pid %d: unhandled trap %d on cpu %d eip %x -- kill proc\n",
curproc[cpu()]->pid, v, cpu(), tf->eip);
proc_exit();
}

46
traps.h
View file

@ -1,31 +1,31 @@
// system defined:
#define T_DIVIDE 0 // divide error
#define T_DEBUG 1 // debug exception
#define T_NMI 2 // non-maskable interrupt
#define T_BRKPT 3 // breakpoint
#define T_OFLOW 4 // overflow
#define T_BOUND 5 // bounds check
#define T_ILLOP 6 // illegal opcode
#define T_DEVICE 7 // device not available
#define T_DBLFLT 8 // double fault
// #define T_COPROC 9 // reserved (not generated by recent processors)
#define T_TSS 10 // invalid task switch segment
#define T_SEGNP 11 // segment not present
#define T_STACK 12 // stack exception
#define T_GPFLT 13 // genernal protection fault
#define T_PGFLT 14 // page fault
// #define T_RES 15 // reserved
#define T_FPERR 16 // floating point error
#define T_ALIGN 17 // aligment check
#define T_MCHK 18 // machine check
#define T_SIMDERR 19 // SIMD floating point error
#define T_DIVIDE 0 // divide error
#define T_DEBUG 1 // debug exception
#define T_NMI 2 // non-maskable interrupt
#define T_BRKPT 3 // breakpoint
#define T_OFLOW 4 // overflow
#define T_BOUND 5 // bounds check
#define T_ILLOP 6 // illegal opcode
#define T_DEVICE 7 // device not available
#define T_DBLFLT 8 // double fault
// #define T_COPROC 9 // reserved (not used since 486)
#define T_TSS 10 // invalid task switch segment
#define T_SEGNP 11 // segment not present
#define T_STACK 12 // stack exception
#define T_GPFLT 13 // genernal protection fault
#define T_PGFLT 14 // page fault
// #define T_RES 15 // reserved
#define T_FPERR 16 // floating point error
#define T_ALIGN 17 // aligment check
#define T_MCHK 18 // machine check
#define T_SIMDERR 19 // SIMD floating point error
// These are arbitrarily chosen, but with care not to overlap
// processor defined exceptions or interrupt vectors.
#define T_SYSCALL 48 // system call
#define T_DEFAULT 500 // catchall
#define T_SYSCALL 48 // system call
#define T_DEFAULT 500 // catchall
#define IRQ_OFFSET 32 // IRQ 0 corresponds to int IRQ_OFFSET
#define IRQ_OFFSET 32 // IRQ 0 corresponds to int IRQ_OFFSET
#define IRQ_KBD 1
#define IRQ_IDE 14

View file

@ -124,7 +124,8 @@ writetest1(void)
exit();
}
if(((int*)buf)[0] != n) {
printf(stdout, "read content of block %d is %d\n", n, ((int*)buf)[0]);
printf(stdout, "read content of block %d is %d\n",
n, ((int*)buf)[0]);
exit();
}
n++;