
Monads

Sanchayan Maity

Agenda

▶ Recap of Functors
▶ Recap of Applicative
▶ Monads

Functor12

class Functor f where
fmap :: (a -> b) -> f a -> f b
(<$) :: a -> f b -> f a

Functors Laws

▶ Must preserve identity

fmap id = id

▶ Must preserve composition of morphism

fmap (f . g) == fmap f . fmap g

1Category Design Pattern
2Functor Design Pattern

https://www.haskellforall.com/2012/08/the-category-design-pattern.html
https://www.haskellforall.com/2012/09/the-functor-design-pattern.html

Higher order kinds3

▶ For something to be a functor, it has to be a first order kind.

3Haskell’s Kind System

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Applicative

class Functor f => Applicative (f :: TYPE -> TYPE) where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b

fmap f x = pure f <*> x

Examples
pure (+1) <*> [1..3]
[2, 3, 4]

[(*2), (*3)] <*> [4, 5]
[8,10,12,15]

("Woo", (+1)) <*> (" Hoo!", 0)
("Woo Hoo!", 1)

(Sum 2, (+1)) <*> (Sum 0, 0)
(Sum {getSum = 2}, 1)

(Product 3, (+9)) <*> (Product 2, 8)
(Product {getProduct = 6}, 17)

(,) <$> [1, 2] <*> [3, 4]
[(1,3),(1,4),(2,3),(2,4)]

Use cases4

Person
<$> parseString "name" o
<*> parseInt "age" o
<*> parseTelephone "telephone" o

Can also be written as

liftA3 Person
(parseString "name" o)
(parseInt "age" o)
(parseTelephone "telephone" o)

4FP Complete - Crash course to Applicative syntax

https://www.fpcomplete.com/haskell/tutorial/applicative-syntax/

Use cases5

parsePerson :: Parser Person
parsePerson = do

string "Name: "
name <- takeWhile (/= 'n')
endOfLine
string "Age: "
age <- decimal
endOfLine
pure $ Person name age

5FP Complete - Crash course to Applicative syntax

https://www.fpcomplete.com/haskell/tutorial/applicative-syntax/

Use cases6

helper :: () -> Text -> () -> () -> Int -> () -> Person
helper () name () () age () = Person name age

parsePerson :: Parser Person
parsePerson = helper

<$> string "Name: "
<*> takeWhile (/= 'n')
<*> endOfLine
<*> string "Age: "
<*> decimal
<*> endOfLine

6FP Complete - Crash course to Applicative syntax

https://www.fpcomplete.com/haskell/tutorial/applicative-syntax/

Lifting

▶ Seeing Functor as unary lifting and Applicative as n-ary lifting

liftA0 :: Applicative f => (a) -> (f a)
liftA1 :: Functor f => (a -> b) -> (f a -> f b)
liftA2 :: Applicative f => (a -> b -> c) -> (f a -> f b -> f c)
liftA3 :: Applicative f => (a -> b -> c -> d) -> (f a -> f b -> f c -> f d)
liftA4 :: Applicative f => ..

Where liftA0 = pure and liftA1 = fmap.

Monoidal functors
▶ Remember Monoid?

class Monoid m where
mempty :: m
mappend :: m -> m -> m

($) :: (a -> b) -> a -> b
(<$>) :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

mappend :: f f f
($) :: (a -> b) -> a -> b
<*> :: f (a -> b) -> f a -> f b

instance Monoid a => Applicative ((,) a) where
pure x = (mempty, x)
(u, f) <*> (v, x) = (u `mappend` v, f x)

Where are monoids again

fmap (+1) ("blah", 0)
("blah",1)

("Woo", (+1)) <*> (" Hoo!", 0)
("Woo Hoo!", 1)

(,) <$> [1, 2] <*> [3, 4]
[(1,3),(1,4),(2,3),(2,4)]

liftA2 (,) [1, 2] [3, 4]
[(1,3),(1,4),(2,3),(2,4)]

Function apply

▶ Applying a function to an effectful argument

(<$>) :: Functor m => (a -> b) -> m a -> m b
(<*>) :: Applicative m => m (a -> b) -> m a -> m b
(=<<) :: Monad m => (a -> m b) -> m a -> m b

Applicative laws

-- Identity
pure id <*> v = v

-- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

-- Homomorphism
pure f <*> pure x = pure (f x)

-- Interchange
u <*> pure y = pure ($ y) <*> u

Operators7

▶ pure wraps up a pure value into some kind of Applicative
▶ liftA2 applies a pure function to the values inside two Applicative wrapped

values
▶ <$> operator version of fmap
▶ <*> apply a wrapped function to a wrapped value
▶ *>, <*

7FP Complete - Crash course to Applicative syntax

https://www.fpcomplete.com/haskell/tutorial/applicative-syntax/

Monad, is that you?8

8The Unreasonable Effectiveness of Metaphor

https://argumatronic.com/posts/2018-09-02-effective-metaphor.html

Motivation - I

safeInverse :: Float -> Maybe Float
safeInverse 0 = Nothing
safeInverse x = Just (1 / x)

safeSqrt :: Float -> Maybe Float
safeSqrt x = case x <= 0 of

True -> Nothing
False -> Just (sqrt x)

sqrtInverse1 :: Float -> Maybe (Maybe Float)
sqrtInverse1 x = safeInverse <$> (safeSqrt x)

Motivation - I

joinMaybe :: Maybe (Maybe a) -> Maybe a
joinMaybe (Just x) = x
joinMaybe Nothing = Nothing

sqrtInverse2 :: Float -> Maybe Float
sqrtInverse2 x = joinMaybe $ safeInverse <$> (safeSqrt x)

-- In general
-- join :: Monad m => m (m a) -> m a

Motivation - II

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
x >>= f = case x of

(Just x') -> f x'
Nothing -> Nothing

sqrtInverse :: Float -> Maybe Float
sqrtInverse x = (>>=) (safeSqrt x) safeInverse

-- >>= is also known as `bind`

-- In general
-- (>>=) :: Monad m => m a -> (a -> m b) -> m b

Motivation - III

(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> (a -> Maybe c)
f >=> g = \x -> case f x of

Just x -> g x
Nothing -> Nothing

sqrtInverse3 :: Float -> Maybe Float
sqrtInverse3 = safeSqrt >=> safeInverse

-- In general
-- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

Motivations

▶ Flattening
▶ Sequencing
▶ Composition

Monad

class Applicative m => Monad (m :: Type -> Type) where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

import Control.Monad (join)

join :: Monad m => m (m a) -> m a

do notation

main :: IO ()
main = do

putStrLn "What is your name?"
name <- getLine
let greeting = "Hello, " ++ name
putStrLn greeting

Monad laws

-- Left identity
return x >>= f == f x

-- Right identity
x >>= return == x

-- Associativity
m >>= (\x -> k x >>= h) == (m >>= k) >>= h

???

Monoids recap

class Semigroup m where
(<>) :: m -> m -> m

class Semigroup m => Monoid m where
mempty :: m

-- defining mappend is unnecessary, it copies from Semigroup
mappend :: m -> m -> m
mappend = (<>)

Some Math

▶ Category: a set of objects and arrows
▶ Arrows between objects (morphisms): functions mapping one object to another
▶ Two categories: Set and Hask

Categories

▶ Set
▶ Category of sets
▶ Every arrow, function from one set to another

▶ Hask
▶ Similar to Set
▶ Objects are Haskell types like Int instead of Z or R
▶ Arrows between objects a & b are functions of type a -> b
▶ a -> b also a Type in Hask
▶ If A -> B and B -> C, then A -> C ~= . in Hask
▶ Fun fact: Function composition forms a monoid! (See Endo).

https://hackage.haskell.org/package/base-4.20.0.1/docs/Data-Monoid.html#t:Endo

Monads are monoids. . .
In Haskell

▶ Only work with Hask, so functors all map back to Hask.

▶ Functor typeclass are a special type of functor called endofunctors

▶ endofunctors map a category back to itself

▶ Monad is a monoid where

-- Operation
>==>

-- Identity
return

-- Set
Type
a -> m b

Now?

Contrasts with Monad

▶ No data dependency between f a and f b
▶ Result of f a can’t possibly influence the behaviour of f b
▶ That needs something like a -> f b

Applicative vs Monads

▶ Applicative
▶ Effects
▶ Batching and aggregation
▶ Concurrency/Independent

▶ Parsing context free grammar
▶ Exploring all branches of computation (see Alternative)

▶ Monads
▶ Effects
▶ Composition
▶ Sequence/Dependent

▶ Parsing context sensitive grammar
▶ Branching on previous results

https://hackage.haskell.org/package/base-4.20.0.1/docs/Control-Applicative.html#t:Alternative

Weaker but better

▶ Weaker than monads but thus also more common
▶ Lends itself to optimisation (See Facebook’s Haxl project)
▶ Always opt for the least powerful mechanism to get things done
▶ No dependency issues or branching? just use applicative

https://hackage.haskell.org/package/haxl

State monad

newtype State s a = State { runState :: s -> (a, s) }

instance Functor (State s) where
fmap :: (a -> b) -> State s a -> State s b
fmap f (State sa) = State $ \s -> let (a, s) = sa s in (f a, s)

instance Applicative (State s) where
pure :: a -> State s a
pure a = State $ \s -> (a, s)

(<*>) :: State s (a -> b) -> State s a -> State s b
State f <*> State g = State $ \s -> let (aTob, s') = f s in

let (a, s'') = g s' in
(aTob a, s'')

State monad
instance Monad (State s) where

return = pure
(>>=) :: State s a

-> (a -> State s b)
-> State s b

(State f) >>= g = State $ \s -> let (a, s') = f s
ms = runState $ g a

in ms s'
(>>) :: State s a

-> State s b
-> State s b

State f >> State g = State $ \s -> let (_, s') = f s
in g s'

get :: State s s
get = State $ \s -> (s, s)

State monad

put :: s -> State s ()
put s = State $ _ -> ((), s)

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

eval :: State s a -> s -> a
eval (State sa) x = let (a, _) = sa x

in a

Context

type Stack = [Int]

empty :: Stack
empty = []

pop :: State Stack Int
pop = State $ \(x:xs) -> (x, xs)

push :: Int -> State Stack ()
push a = State $ \xs -> ((), a:xs)

tos :: State Stack Int
tos = State $ \(x:xs) -> (x, x:xs)

Context

stackManip :: State Stack Int
stackManip = do

push 10
push 20
a <- pop
b <- pop
push (a+b)
tos

testState = eval stackManip empty

Reader monad

class Monad m => MonadReader r m | m -> r where
ask :: m r
local :: (r -> r) -> m a -> m a

Context

import Control.Monad.Reader

tom :: Reader String String
tom = do

env <- ask
return (env ++ " This is Tom.")

jerry :: Reader String String
jerry = do

env <- ask
return (env ++ " This is Jerry.")

Context

tomAndJerry :: Reader String String
tomAndJerry = do

t <- tom
j <- jerry
return (t ++ " " ++ j)

runJerryRun :: String
runJerryRun = runReader tomAndJerry "Who is this?"

Questions

▶ Reach out on
▶ Email: me@sanchayanmaity.net
▶ Mastodon: sanchayanmaity.com
▶ Telegram: t.me/SanchayanMaity
▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://t.me/SanchayanMaity
https://sanchayanmaity.net/

