Effect Systems in Haskell - Part Il

Sanchayan Maity

S



Agenda >

» Cover two papers on Effect Systems.
» Generalized Evidence Passing for Effect Handlers!
» Effect Handlers in Haskell, Evidently?
» Some sections today's discussion isn't going to cover
» Efficiency/Performance of the library or effect system itself
» How to use effect systems
» Comparison of effect system libraries or how to choose one

! Generalized Evidence Passing for Effect Handlers
2Effect Handlers in Haskell, evidently


https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf

Recap, what's it all about

> Separate syntax from semantics
P> Interpret your abstract syntax tree in various ways
> Not losing performance while having both

S



Recap, why effect systems

» Monads to model effects but monads don’t compose3

» transformers/mtl has limitations
» Monad transformer stacks are rigid
» Doesn't allow handling something like Reader Int (Reader String) due to
functional dependencies
class Monad m => MonadReader r m
» More than a few effects in stack become unwieldy

P n-square instances problem

| m >r

3Composing Monads by Mark Jones and Luc Duponcheel


https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Evidence passing based effect system libraries

VVYyVYVYVYY

EvEff

MpEf f

speff

cleff based on ReaderT IO
effectful based on ReaderT IO
others?

S



Some myths* e

» Many extensible effects libraries are implemented with free(r) monads (True)
» Therefore extensible effects = free(r) monads (False)

» Free(r) monads require certain mathematical concepts to grasp (True)

» Free(r) monads don't have very good performance (True, to some extent)

» Therefore extensible effects are slow, ivory-towerish toys (False)

*ReaderT pattern is just extensible effects


https://喵.世界/2022/02/03/readert-is-extensible-effects/

Effects can be implemented in various way

> free monads

» ReaderT IO

> CPS

» delimited continuations

S



What's the gist

» How do you pass the handler for the effect?

S



Generalized control flow

» Languages that expose a yield primitive actually have a way to access delimited
continuations! Central result of the paper by James-Sabry 5.

%Yield: Mainstream Delimited Continuations
®Delimited Continuations are all you need

S


https://legacy.cs.indiana.edu/~sabry/papers/yield.pdf
https://www.youtube.com/watch?v=uRbqLGj_6mI

WTH are delimited continuations

» Delimited Continuations for Everyone’

"Delimited Continuations for Everyone

S


https://github.com/papers-we-love/pwlconf-info/tree/master/2017/kenichi-asai

How does one define an effect

data Reader a e ans = Reader { ask ::

}

data State a e ans = State { get ::
, put ::

}

'(0p OO a e ans)

'(0Op O a e ans)
'(Op a O e ans)

S



Multi-prompt delimited control »

data Ctl e a = Pure { result :: !a }
| forall h b e' ans.
Control {
-— prompt marker to yield to (in type context “::ans’)
marker :: Marker h e' ans,
-- the final action, just needs the resumption (:: b -> Eff e' ans)
op it 1 ((b -> Eff e' ans) -> Eff e' ans),
-— the (partially) build up resumption;
-- (b > Eff ea) :~: (b -> Eff e' ans) by the time
-— we reach the prompt
cont :: 1 (b -> Eff e a) }

data Context e where

CCons :: !(Marker h e' ans) —> !(h e' ans) -> !(ContextT e e')
-> ! (Context e) -> Context (h :* e)
CNil :: Context ()



Key ideas

VVVYyVYVYYVYY

Multi Prompt

Evidence Passing

Tail Resumptive Operations
Bubbling Yields

Short cut resumptions

Monadic Translation

Bind-inlining and Join-Point Sharing

S



Dig in

» Dig in to the paper!

S



Resources »

VVYVVVVVYVYYVYYVYY

Alexis King on “Delimited Continuations, Demystified” ©ZuriHac2023
GHC Proposal: Delimited continuation primops

Delimited Continuations

Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
From Folklore to Fact: Comparing Implementations of Stacks and Continuations
Compiler and Runtime Support for Continuation Marks

Capturing the Future by Replaying the Past Functional Pearl

From Delimited Continuations to Algebraic Effects in Haskell
Concurrent System Programming with Effect Handlers

Eff Directly in OCaml

Retrofitting Effect Handlers onto OCaml


https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf

Questions?

» Reac
>

>
>
>

h out on
Email: sanchayan@sanchayanmaity.net
Mastodon: https://sanchayanmaity.com/@sanchayan
Blog: https://sanchayanmaity.net
Telegram:
> t.me/fpncr
> t.me/SanchayanMaity

S



