
Applicatives

Sanchayan Maity

Agenda

▶ Recap of Functors
▶ Applicative

Functor12

class Functor f where
fmap :: (a -> b) -> f a -> f b
(<$) :: a -> f b -> f a

Functors Laws

▶ Must preserve identity

fmap id = id

▶ Must preserve composition of morphism

fmap (f . g) == fmap f . fmap g

1Category Design Pattern
2Functor Design Pattern

https://www.haskellforall.com/2012/08/the-category-design-pattern.html
https://www.haskellforall.com/2012/09/the-functor-design-pattern.html

Higher order kinds3

▶ For something to be a functor, it has to be a first order kind.

3Haskell’s Kind System

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Applicative

class Functor f => Applicative (f :: TYPE -> TYPE) where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b

fmap f x = pure f <*> x

Examples
pure (+1) <*> [1..3]
[2, 3, 4]

[(*2), (*3)] <*> [4, 5]
[8,10,12,15]

("Woo", (+1)) <*> (" Hoo!", 0)
("Woo Hoo!", 1)

(Sum 2, (+1)) <*> (Sum 0, 0)
(Sum {getSum = 2}, 1)

(Product 3, (+9)) <*> (Product 2, 8)
(Product {getProduct = 6}, 17)

(,) <$> [1, 2] <*> [3, 4]
[(1,3),(1,4),(2,3),(2,4)]

Lifting

▶ Seeing Functor as unary lifting and Applicative as n-ary lifting

liftA0 :: Applicative f => (a) -> (f a)
liftA1 :: Functor f => (a -> b) -> (f a -> f b)
liftA2 :: Applicative f => (a -> b -> c) -> (f a -> f b -> f c)
liftA3 :: Applicative f => (a -> b -> c -> d) -> (f a -> f b -> f c -> f d)
liftA4 :: Applicative f => ..

Where liftA0 = pure and liftA1 = fmap.

Monoidal functors
▶ Remember Monoid?

class Monoid m where
mempty :: m
mappend :: m -> m -> m

($) :: (a -> b) -> a -> b
(<$>) :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

mappend :: f f f
($) :: (a -> b) -> a -> b
<*> :: f (a -> b) -> f a -> f b

instance Monoid a => Applicative ((,) a) where
pure x = (mempty, x)
(u, f) <*> (v, x) = (u `mappend` v, f x)

Function apply

▶ Applying a function to an effectful argument

(<$>) :: Functor m => (a -> b) -> m a -> m b
(<*>) :: Applicative m => m (a -> b) -> m a -> m b
(=<<) :: Monad m => (a -> m b) -> m a -> m b

Contrasts with monad

▶ No data dependency between f a and f b
▶ Result of f a can’t possibly influence the behaviour of f b
▶ That needs something like a -> f b

Applicative laws

-- Identity
pure id <*> v = v

-- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

-- Homomorphism
pure f <*> pure x = pure (f x)

-- Interchange
u <*> pure y = pure ($ y) <*> u

Applicative vs monads

▶ Applicative
▶ Effects
▶ Batching and aggregation
▶ Concurrency/Independent

▶ Parsing context free grammar
▶ Exploring all branches of computation (see Alternative)

▶ Monads
▶ Effects
▶ Composition
▶ Sequence/Dependent

▶ Parsing context sensitive grammar
▶ Branching on previous results

Weaker but better

▶ Weaker than monads but thus also more common
▶ Lends itself to optimisation (See Facebook’s Haxl project)
▶ Always opt for the least powerful mechanism to get things done
▶ No dependency issues or branching? just use applicative

https://hackage.haskell.org/package/haxl

Resources

▶ Applicative Programming with Effects
▶ optparse-applicative
▶ Control Applicative

https://www.staff.city.ac.uk/~ross/papers/Applicative.html
https://hackage.haskell.org/package/optparse-applicative
https://hackage.haskell.org/package/base-4.19.1.0/docs/Control-Applicative.html

Questions

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: sanchayanmaity.com
▶ Telegram: t.me/SanchayanMaity
▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://t.me/SanchayanMaity
https://sanchayanmaity.net/

