
QUIC with GStreamer & Rust

Sanchayan Maity



Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?
▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Open source contributions

▶ GStreamer
▶ gst-plugins-rs
▶ PipeWire
▶ PulseAudio
▶ Linux
▶ u-boot

https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests?scope=all&state=all&author_username=SanchayanMaity
https://gitlab.freedesktop.org/gstreamer/gst-plugins-rs/-/merge_requests?scope=all&state=all&author_username=SanchayanMaity
https://gitlab.freedesktop.org/pipewire/pipewire/-/merge_requests?scope=all&state=all&author_username=SanchayanMaity
https://gitlab.freedesktop.org/pulseaudio/pulseaudio/-/merge_requests?scope=all&state=all&author_username=SanchayanMaity
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=Sanchayan+Maity
https://source.denx.de/u-boot/u-boot/-/commits/master?search=Sanchayan%20Maity


Agenda

▶ QUIC which is a UDP-Based Multiplexed and Secure Transport and standardized in
RFC 9000

▶ Whirlwind tour of GStreamer
▶ QUIC implementations in Rust
▶ QUIC support in GStreamer
▶ Demo
▶ Future work



QUIC

▶ QUIC is pronounced exactly like the English word “quick”
▶ Not an acronym
▶ Reliable and secure transport protocol
▶ Addresses some of the known shortcomings of doing HTTP/2 over TCP and TLS
▶ Standardized QUIC in RFC 9000
▶ Supported by RFC 8999, RFC 9001 and RFC 9002



Building on shoulders of giants

▶ HTTP/2 RFC7540 published in May 2015
▶ Makes use of multiplexing

▶ Multiple logical streams over same logical connection
▶ Better congestion control
▶ Makes better use of TCP with bandwidth saturation
▶ Less bandwidth consumption due to header compression

https://www.rfc-editor.org/rfc/rfc7540


Head of line blocking1

1Head of line blocking

https://en.wikipedia.org/wiki/Head-of-line_blocking


Protocol

▶ Something new?
▶ TCP?
▶ UDP?



Security/encryption

▶ No clear text version of the protocol
▶ Negotiation employs cryptography and security with TLS 1.3



QUIC

▶ Implemented on top of UDP
▶ Uses UDP port numbers
▶ Implements re-transmission, congestion control among others
▶ Logical streams similar to HTTP/2

▶ In-order
▶ Reliable
▶ Different streams can be out-of-order

▶ Flow control
▶ Fast handshakes (0-RTT and 1-RTT)



GStreamer

▶ Multiplatform Pipeline based multimedia framework
▶ Bindings for various languages
▶ Allows building complex media processing workflows
▶ Some applications

▶ PiTiVi (Video Editor)
▶ amaroK, Banshee, Clementine (audio players)
▶ Empathy (VOIP and video conferencing)
▶ GstLAL (gravitational wave data analysis)
▶ Rygel (DLNA streaming server and renderer)
▶ Totem (movie player for the GNOME desktop)



Simple pipeline

gst-launch-1.0 videotestsrc ! autovideosink
gst-launch-1.0 audiotestsrc ! autoaudiosink



Media pipeline2

2Dynamic Pipelines

https://gstreamer.freedesktop.org/documentation/tutorials/basic/dynamic-pipelines.html?gi-language=c


Rust implementations

▶ quinn-rs
▶ quiche
▶ s2n-quic
▶ neqo
▶ msquic

https://github.com/quinn-rs/quinn
https://github.com/cloudflare/quiche
https://github.com/aws/s2n-quic
https://github.com/mozilla/neqo
https://github.com/microsoft/msquic


QUIC in GStreamer

▶ Prior work
▶ gst-quic-transport

▶ quinnquicsink and quinnquicsrc (Merged just a month ago)
▶ Written in Rust
▶ Uses quinn-rs
▶ New elements quinnquicmux and quinnquicdemux to support stream

multiplexing

https://github.com/bbc/gst-quic-transport
https://github.com/quinn-rs/quinn


Audio demo

gst-launch-1.0 -v -e audiotestsrc blocksize=4096 ! \
audio/x-raw,format=S16LE,rate=48000,channels=2,layout=interleaved ! \
opusenc ! quinnquicsink use-datagram=false secure-connection=false

gst-launch-1.0 -v -e audiotestsrc blocksize=4096 ! \
audio/x-raw,format=S16LE,rate=48000,channels=2,layout=interleaved ! \
opusenc ! quinnquicsink use-datagram=false secure-connection=false



Video demo

quin-quic-mux

▶ Shows stream and datagram multiplexed on same connection
▶ Merge request: !1634

https://git.sanchayanmaity.net/sanchayanmaity/quinn-quic-mux
https://gitlab.freedesktop.org/gstreamer/gst-plugins-rs/-/merge_requests/1634


Future work

▶ Handling flow control
▶ Congestion control
▶ RTP over QUIC
▶ Media over QUIC

https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-over-quic/
https://datatracker.ietf.org/group/moq/about/


References

▶ RFC 9000
▶ Road to QUIC
▶ 0-RTT

https://www.rfc-editor.org/rfc/rfc9000.html
https://blog.cloudflare.com/the-road-to-quic
https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption/


Questions

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: sanchayanmaity.com
▶ Telegram: https://t.me/SanchayanMaity
▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://sanchayanmaity.net/

