
Effect Systems in Haskell - Part I

Sanchayan Maity



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov

▶ Extensible Effects - An Alternative to Monad Transformers
▶ Freer Monads, More Extensible Effects

▶ Related paper Reflection Without Remorse
▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ For the sake of time, focus more on the implementation
▶ Comparison of effect system libraries or how to choose one



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov
▶ Extensible Effects - An Alternative to Monad Transformers

▶ Freer Monads, More Extensible Effects
▶ Related paper Reflection Without Remorse
▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ For the sake of time, focus more on the implementation
▶ Comparison of effect system libraries or how to choose one



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov
▶ Extensible Effects - An Alternative to Monad Transformers
▶ Freer Monads, More Extensible Effects

▶ Related paper Reflection Without Remorse
▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ For the sake of time, focus more on the implementation
▶ Comparison of effect system libraries or how to choose one



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov
▶ Extensible Effects - An Alternative to Monad Transformers
▶ Freer Monads, More Extensible Effects

▶ Related paper Reflection Without Remorse

▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ For the sake of time, focus more on the implementation
▶ Comparison of effect system libraries or how to choose one



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov
▶ Extensible Effects - An Alternative to Monad Transformers
▶ Freer Monads, More Extensible Effects

▶ Related paper Reflection Without Remorse
▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ For the sake of time, focus more on the implementation
▶ Comparison of effect system libraries or how to choose one



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov
▶ Extensible Effects - An Alternative to Monad Transformers
▶ Freer Monads, More Extensible Effects

▶ Related paper Reflection Without Remorse
▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself

▶ For the sake of time, focus more on the implementation
▶ Comparison of effect system libraries or how to choose one



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov
▶ Extensible Effects - An Alternative to Monad Transformers
▶ Freer Monads, More Extensible Effects

▶ Related paper Reflection Without Remorse
▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ For the sake of time, focus more on the implementation

▶ Comparison of effect system libraries or how to choose one



Agenda

▶ Cover two papers on Effect Systems by Oleg Kiselyov
▶ Extensible Effects - An Alternative to Monad Transformers
▶ Freer Monads, More Extensible Effects

▶ Related paper Reflection Without Remorse
▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ For the sake of time, focus more on the implementation
▶ Comparison of effect system libraries or how to choose one



What’s it all about

▶ Separate syntax from semantics

▶ Interpret your abstract syntax tree in various ways
▶ Not losing performance while having both



What’s it all about

▶ Separate syntax from semantics
▶ Interpret your abstract syntax tree in various ways

▶ Not losing performance while having both



What’s it all about

▶ Separate syntax from semantics
▶ Interpret your abstract syntax tree in various ways
▶ Not losing performance while having both



Why effect systems

▶ Monads to model effects but monads don’t compose1

▶ transformers/mtl has limitations

▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies

class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Why effect systems

▶ Monads to model effects but monads don’t compose1

▶ transformers/mtl has limitations

▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies

class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Why effect systems

▶ Monads to model effects but monads don’t compose1

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid

▶ Doesn’t allow handling something like Reader Int (Reader String) due to
functional dependencies

class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Why effect systems

▶ Monads to model effects but monads don’t compose1

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies
class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Why effect systems

▶ Monads to model effects but monads don’t compose1

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies
class Monad m => MonadReader r m | m -> r
▶ More than a few effects in stack become unwieldy

▶ n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Why effect systems

▶ Monads to model effects but monads don’t compose1

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies
class Monad m => MonadReader r m | m -> r
▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Effect system libraries

▶ freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

▶ polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al
▶ fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by

Wu, Schrijvers et al
▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Effect system libraries

▶ freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

▶ polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al

▶ fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by
Wu, Schrijvers et al

▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Effect system libraries

▶ freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

▶ polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al
▶ fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by

Wu, Schrijvers et al

▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Effect system libraries

▶ freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

▶ polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al
▶ fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by

Wu, Schrijvers et al
▶ cleff based on ReaderT IO

▶ effectful based on ReaderT IO
▶ others?



Effect system libraries

▶ freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

▶ polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al
▶ fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by

Wu, Schrijvers et al
▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO

▶ others?



Effect system libraries

▶ freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

▶ polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al
▶ fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by

Wu, Schrijvers et al
▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Free monads

Given a Functor f, Free f is a Free monad.

data Free f a = Pure a
| Free (f (Free f a))

A Monad is something that “computes” when monadic context is collapsed by join ::
m (m a) -> m a (recalling that >>= can be defined as x >>= y = join (fmap y
x)). This is how Monads carry context through a sequential chain of computations:
because at each point in the series, the context from the previous call is collapsed with
the next.

A free monad satisfies all the Monad laws, but doesn’t do any collapsing (that’s the
computation). It just builds up a nested series of contexts. The user who creates such a
free monadic value is responsible for doing something with those nested contexts, so
that the meaning of such a composition can be deferred until after the monadic value
has been created.2

2John Wiegley on Stack Overflow.

https://stackoverflow.com/a/13388966


Huh, what did that mean

▶ Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

▶ fmap is performing substitution and join is dealing with any re-normalization.
▶ Done this way, (m >>= f) on the Maybe monad would first fmap to obtain Just

(Just a), Just Nothing or Nothing before flattening.
▶ In the Maybe a case, the association of binds is largely immaterial, the

normalization pass fixes things up to basically the same size.
▶ In Free monad, the monad is purely defined in terms of substitution.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Huh, what did that mean

▶ Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

▶ fmap is performing substitution and join is dealing with any re-normalization.

▶ Done this way, (m >>= f) on the Maybe monad would first fmap to obtain Just
(Just a), Just Nothing or Nothing before flattening.

▶ In the Maybe a case, the association of binds is largely immaterial, the
normalization pass fixes things up to basically the same size.

▶ In Free monad, the monad is purely defined in terms of substitution.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Huh, what did that mean

▶ Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

▶ fmap is performing substitution and join is dealing with any re-normalization.
▶ Done this way, (m >>= f) on the Maybe monad would first fmap to obtain Just

(Just a), Just Nothing or Nothing before flattening.

▶ In the Maybe a case, the association of binds is largely immaterial, the
normalization pass fixes things up to basically the same size.

▶ In Free monad, the monad is purely defined in terms of substitution.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Huh, what did that mean

▶ Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

▶ fmap is performing substitution and join is dealing with any re-normalization.
▶ Done this way, (m >>= f) on the Maybe monad would first fmap to obtain Just

(Just a), Just Nothing or Nothing before flattening.
▶ In the Maybe a case, the association of binds is largely immaterial, the

normalization pass fixes things up to basically the same size.

▶ In Free monad, the monad is purely defined in terms of substitution.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Huh, what did that mean

▶ Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

▶ fmap is performing substitution and join is dealing with any re-normalization.
▶ Done this way, (m >>= f) on the Maybe monad would first fmap to obtain Just

(Just a), Just Nothing or Nothing before flattening.
▶ In the Maybe a case, the association of binds is largely immaterial, the

normalization pass fixes things up to basically the same size.
▶ In Free monad, the monad is purely defined in terms of substitution.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Free monads performance

▶ Vanilla free monads don’t have great performance.

▶ Solutions like Codensity monad transformer and Church encoded free monad
exist.34

newtype FT f m a =
FT { runFT :: forall r. (a -> m r) -> (forall x. (x -> m r) -> f x -> m r) -> m r }

▶ Think of Codensity as a type level construction which ensures that you end up
with a right associated bind.5

3Asymptotic Improvement of Computations over Free Monads - Janis Voigtländer
4The Free and The Furious: And by ‘Furious’ I mean Codensity. - raichoo
5Free Monads for less - Edward Kmett

https://www.youtube.com/watch?v=EiIZlX_k89Y
https://ekmett.github.io/reader/2011/free-monads-for-less-2/index.html


Free monads performance

▶ Vanilla free monads don’t have great performance.
▶ Solutions like Codensity monad transformer and Church encoded free monad

exist.34

newtype FT f m a =
FT { runFT :: forall r. (a -> m r) -> (forall x. (x -> m r) -> f x -> m r) -> m r }

▶ Think of Codensity as a type level construction which ensures that you end up
with a right associated bind.5

3Asymptotic Improvement of Computations over Free Monads - Janis Voigtländer
4The Free and The Furious: And by ‘Furious’ I mean Codensity. - raichoo

5Free Monads for less - Edward Kmett

https://www.youtube.com/watch?v=EiIZlX_k89Y
https://ekmett.github.io/reader/2011/free-monads-for-less-2/index.html


Free monads performance

▶ Vanilla free monads don’t have great performance.
▶ Solutions like Codensity monad transformer and Church encoded free monad

exist.34

newtype FT f m a =
FT { runFT :: forall r. (a -> m r) -> (forall x. (x -> m r) -> f x -> m r) -> m r }

▶ Think of Codensity as a type level construction which ensures that you end up
with a right associated bind.5

3Asymptotic Improvement of Computations over Free Monads - Janis Voigtländer
4The Free and The Furious: And by ‘Furious’ I mean Codensity. - raichoo
5Free Monads for less - Edward Kmett

https://www.youtube.com/watch?v=EiIZlX_k89Y
https://ekmett.github.io/reader/2011/free-monads-for-less-2/index.html


Reflection without remorse

▶ A left associated expression is asymptotically slower than the equivalent right
associated expression. O(n2) vs O(n) respectively.

▶ What’s meant by reflection? Build and observe.
▶ Efficient data structures give asymptotic improvement for problematic occurrences

of build and observe pattern like monads and monadic reflection.



Reflection without remorse

▶ A left associated expression is asymptotically slower than the equivalent right
associated expression. O(n2) vs O(n) respectively.

▶ What’s meant by reflection? Build and observe.

▶ Efficient data structures give asymptotic improvement for problematic occurrences
of build and observe pattern like monads and monadic reflection.



Reflection without remorse

▶ A left associated expression is asymptotically slower than the equivalent right
associated expression. O(n2) vs O(n) respectively.

▶ What’s meant by reflection? Build and observe.
▶ Efficient data structures give asymptotic improvement for problematic occurrences

of build and observe pattern like monads and monadic reflection.



Extensible effects

▶ Defines only one effect Eff

▶ Type level list of effects
▶ What does it mean to be extensible?



Extensible effects

▶ Defines only one effect Eff
▶ Type level list of effects

▶ What does it mean to be extensible?



Extensible effects

▶ Defines only one effect Eff
▶ Type level list of effects
▶ What does it mean to be extensible?



Freer monads

▶ Improves on extensible effects

▶ How?

▶ Relaxes the Functor constraint, becoming Freer!
▶ No need for Functor and Typeable on Union

▶ freer and freer-simple are based on Freer monads

data FFree f a where
Pure :: a → FFree f a
Impure :: f x → (x → FFree f a) → FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads

▶ Improves on extensible effects
▶ How?

▶ Relaxes the Functor constraint, becoming Freer!
▶ No need for Functor and Typeable on Union

▶ freer and freer-simple are based on Freer monads

data FFree f a where
Pure :: a → FFree f a
Impure :: f x → (x → FFree f a) → FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads

▶ Improves on extensible effects
▶ How?

▶ Relaxes the Functor constraint, becoming Freer!

▶ No need for Functor and Typeable on Union
▶ freer and freer-simple are based on Freer monads

data FFree f a where
Pure :: a → FFree f a
Impure :: f x → (x → FFree f a) → FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads

▶ Improves on extensible effects
▶ How?

▶ Relaxes the Functor constraint, becoming Freer!
▶ No need for Functor and Typeable on Union

▶ freer and freer-simple are based on Freer monads

data FFree f a where
Pure :: a → FFree f a
Impure :: f x → (x → FFree f a) → FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads

▶ Improves on extensible effects
▶ How?

▶ Relaxes the Functor constraint, becoming Freer!
▶ No need for Functor and Typeable on Union

▶ freer and freer-simple are based on Freer monads

data FFree f a where
Pure :: a → FFree f a
Impure :: f x → (x → FFree f a) → FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads

▶ The continuation can now be accessed directly rather than via fmap, which has to
rebuild the mapped data structure.

▶ The explicit continuation of FFree also makes it easier to change its representation.

class Member t r where
inj :: t v -> Union r v
prj :: Union r v -> Maybe (t v)

and

data FEFree r a where
Pure :: a → FEFree r a
Impure :: Union r x → (x → FEFree r a) → FEFree r a



Freer monads

▶ The continuation can now be accessed directly rather than via fmap, which has to
rebuild the mapped data structure.

▶ The explicit continuation of FFree also makes it easier to change its representation.

class Member t r where
inj :: t v -> Union r v
prj :: Union r v -> Maybe (t v)

and

data FEFree r a where
Pure :: a → FEFree r a
Impure :: Union r x → (x → FEFree r a) → FEFree r a



Freer monads

▶ FEFree r becomes Eff r, where r is the list of effect labels.

▶ The request continuation which receives the reply x and works towards the final
answer a, then has the type x → Eff r a.

type Arr r a b = a → Eff r b

data FTCQueue m a b where
Leaf :: (a -> m b) -> FTCQueue m a b
Node :: FTCQueue m a x -> FTCQueue m x b -> FTCQueue m a b

type Arrs r a b = FTCQueue (Eff r) a b

data Eff r a where
Pure :: a → Eff r a
Impure :: Union r x → Arrs r x a → Eff r a



Freer monads

▶ FEFree r becomes Eff r, where r is the list of effect labels.
▶ The request continuation which receives the reply x and works towards the final

answer a, then has the type x → Eff r a.

type Arr r a b = a → Eff r b

data FTCQueue m a b where
Leaf :: (a -> m b) -> FTCQueue m a b
Node :: FTCQueue m a x -> FTCQueue m x b -> FTCQueue m a b

type Arrs r a b = FTCQueue (Eff r) a b

data Eff r a where
Pure :: a → Eff r a
Impure :: Union r x → Arrs r x a → Eff r a



Resources

▶ Why Free monads matter

▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful

▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT

▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch

▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads

▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less

▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse

▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects

▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography

▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography

▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples

▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style

▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Resources

▶ Why Free monads matter
▶ Free monad considered harmful
▶ Building real-world Haskell applications using Tagless-Final and ReaderT
▶ Free monads from scratch
▶ An earlier talk of my own on Free Monads
▶ Free Monads for less
▶ When to use CPS vs codensity vs reflection without remorse
▶ ReaderT pattern is just extensible effects
▶ My Effects Bibliography
▶ Effects Bibliography
▶ Freer simple effects examples
▶ Continuation Passing Style
▶ Existential Quantification

https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html


Questions?

▶ Reach out on

▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net

▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan

▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net

▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr

▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity


