
Getting comfy with async await

Sanchayan Maity



Who

▶ Who am I?

▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?

▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background

▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?

▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust

▶ Organize and speak at Rust and Haskell meet-ups in Bangalore
▶ Work?

▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?

▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?

▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?
▶ Software Engineer @ asymptotic

▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?
▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto

▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?
▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia

▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?
▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio

▶ Language Polyglots

https://asymptotic.io/


Who

▶ Who am I?
▶ Embedded Systems background
▶ Prefer C, Haskell and Rust
▶ Organize and speak at Rust and Haskell meet-ups in Bangalore

▶ Work?
▶ Software Engineer @ asymptotic
▶ Open source consulting firm based out of Bangalore and Toronto
▶ Work on low level systems software centred around multimedia
▶ GStreamer, PipeWire, PulseAudio
▶ Language Polyglots

https://asymptotic.io/


Agenda

▶ Future trait

▶ async/await
▶ Using futures/Runtime
▶ Working with multiple futures (select, join, FuturesOrdered)
▶ Streams
▶ Pitfalls
▶ Pin/Unpin/pin_project



Agenda

▶ Future trait
▶ async/await

▶ Using futures/Runtime
▶ Working with multiple futures (select, join, FuturesOrdered)
▶ Streams
▶ Pitfalls
▶ Pin/Unpin/pin_project



Agenda

▶ Future trait
▶ async/await
▶ Using futures/Runtime

▶ Working with multiple futures (select, join, FuturesOrdered)
▶ Streams
▶ Pitfalls
▶ Pin/Unpin/pin_project



Agenda

▶ Future trait
▶ async/await
▶ Using futures/Runtime
▶ Working with multiple futures (select, join, FuturesOrdered)

▶ Streams
▶ Pitfalls
▶ Pin/Unpin/pin_project



Agenda

▶ Future trait
▶ async/await
▶ Using futures/Runtime
▶ Working with multiple futures (select, join, FuturesOrdered)
▶ Streams

▶ Pitfalls
▶ Pin/Unpin/pin_project



Agenda

▶ Future trait
▶ async/await
▶ Using futures/Runtime
▶ Working with multiple futures (select, join, FuturesOrdered)
▶ Streams
▶ Pitfalls

▶ Pin/Unpin/pin_project



Agenda

▶ Future trait
▶ async/await
▶ Using futures/Runtime
▶ Working with multiple futures (select, join, FuturesOrdered)
▶ Streams
▶ Pitfalls
▶ Pin/Unpin/pin_project



Future1

use std::future::Future;
use std::pin::Pin;
use std::task::Context;

pub trait Future {
type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)

-> Poll<Self::Output>;
}

pub enum Poll<T> {
Ready(T),
Pending,

}

1Associated types

https://doc.rust-lang.org/reference/items/associated-items.html


Example

async fn hello() {
println!("Hello from async");

}

fn main() {
hello();
println!("Hello from main");

}



Where’s the future

async fn give_number() -> u32 {
100

}



Sugar town2

fn give_number() -> impl Future<Output = u32> {
GiveNumberFuture

}

struct GiveNumberFuture {}

impl Future for GiveNumberFuture {
type Output = u32;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output> {

Poll::Ready(100)
}

}

2Syntactic sugar for Future

https://ruspiro.github.io/ruspiro-async-book/02-03-async.html


Runtimes



Runtimes3

▶ futures::executor

▶ tokio
▶ smol-rs
▶ embassy
▶ glommio
▶ async-std

3The state of Async Rust: Runtimes

https://corrode.dev/blog/async/


Runtimes3

▶ futures::executor
▶ tokio

▶ smol-rs
▶ embassy
▶ glommio
▶ async-std

3The state of Async Rust: Runtimes

https://corrode.dev/blog/async/


Runtimes3

▶ futures::executor
▶ tokio
▶ smol-rs

▶ embassy
▶ glommio
▶ async-std

3The state of Async Rust: Runtimes

https://corrode.dev/blog/async/


Runtimes3

▶ futures::executor
▶ tokio
▶ smol-rs
▶ embassy

▶ glommio
▶ async-std

3The state of Async Rust: Runtimes

https://corrode.dev/blog/async/


Runtimes3

▶ futures::executor
▶ tokio
▶ smol-rs
▶ embassy
▶ glommio

▶ async-std

3The state of Async Rust: Runtimes

https://corrode.dev/blog/async/


Runtimes3

▶ futures::executor
▶ tokio
▶ smol-rs
▶ embassy
▶ glommio
▶ async-std

3The state of Async Rust: Runtimes

https://corrode.dev/blog/async/


Example

use futures::executor::block_on;

async fn hello() {
println!("hello, world!");

}

fn main() {
block_on(hello());
println!("Hello from main");

}



Example

async fn hello() {
println!("Hello from async");

}

#[tokio::main]
async fn main() {

hello().await;
println!("Hello from main");

}



Multiple futures

▶ join

▶ join_all
▶ select
▶ select!
▶ select_all
▶ FuturesOrdered
▶ FuturesUnordered
▶ JoinSet



Multiple futures

▶ join
▶ join_all

▶ select
▶ select!
▶ select_all
▶ FuturesOrdered
▶ FuturesUnordered
▶ JoinSet



Multiple futures

▶ join
▶ join_all
▶ select

▶ select!
▶ select_all
▶ FuturesOrdered
▶ FuturesUnordered
▶ JoinSet



Multiple futures

▶ join
▶ join_all
▶ select
▶ select!

▶ select_all
▶ FuturesOrdered
▶ FuturesUnordered
▶ JoinSet



Multiple futures

▶ join
▶ join_all
▶ select
▶ select!
▶ select_all

▶ FuturesOrdered
▶ FuturesUnordered
▶ JoinSet



Multiple futures

▶ join
▶ join_all
▶ select
▶ select!
▶ select_all
▶ FuturesOrdered

▶ FuturesUnordered
▶ JoinSet



Multiple futures

▶ join
▶ join_all
▶ select
▶ select!
▶ select_all
▶ FuturesOrdered
▶ FuturesUnordered

▶ JoinSet



Multiple futures

▶ join
▶ join_all
▶ select
▶ select!
▶ select_all
▶ FuturesOrdered
▶ FuturesUnordered
▶ JoinSet



join

use futures::future;

#[tokio::main]
async fn main() {

let a = async { "Future 1" };
let b = async { "Future 2" };
let pair = future::join(a, b);

println!("{:?}", pair.await);
}



join_all
use futures::future::join_all;
async fn hello(msg: String) -> String {

msg
}

#[tokio::main]
async fn main() {

let futures = vec![
hello("Future 1".to_string()),
hello("Future 2".to_string()),
hello("Future 3".to_string()),
hello("Future 4".to_string()),

];

println!("{:?}", join_all(futures).await);
}



JoinSet

use tokio::task::JoinSet;

#[tokio::main]
async fn main() {

let mut set = JoinSet::new();
for i in 0..10 {

set.spawn(async move { i });
}

while let Some(res) = set.join_next().await {
println!("{}", res.unwrap());

}
}



future::select

pub fn select<A, B>(future1: A, future2: B) -> Select<A, B>
where

A: Future + Unpin,
B: Future + Unpin,



future::select

use futures::{future, future::Either, future::FutureExt, select};
use tokio::time::{sleep, Duration};

async fn task1(delay: u64) -> u64 {
sleep(Duration::from_millis(delay)).await;
delay

}

async fn task2(delay: u64) -> String {
sleep(Duration::from_millis(delay)).await;
"Hello".to_string()

}



future::select

#[tokio::main]
async fn main() {

let t1 = task1(200u64).fuse();
let t2 = task2(300u64).fuse();

tokio::pin!(t1, t2);

match future::select(t1, t2).await {
Either::Left((value1, _)) => println!("{}", value1),
Either::Right((value2, _)) => println!("{}", value2),

};
}



futures::select!4

use futures::{future::FutureExt, pin_mut, select};
use tokio::time::{sleep, Duration};
async fn task(delay: u64) {

sleep(Duration::from_millis(delay)).await;
}

#[tokio::main]
async fn main() {

let t1 = task(300u64).fuse();
let t2 = task(200u64).fuse();
pin_mut!(t1, t2);
select! {

() = t1 => println!("task one completed first"),
() = t2 => println!("task two completed first"),

}
}

4futures::select!

https://docs.rs/futures/latest/futures/macro.select.html


tokio::select!5

use tokio::time::{sleep, Duration};
async fn task(delay: u64) {

sleep(Duration::from_millis(delay)).await;
}

#[tokio::main]
async fn main() {

let t1 = task(300u64);
let t2 = task(200u64);
tokio::pin!(t1, t2);
tokio::select! {

() = t1 => println!("task one completed first"),
() = t2 => println!("task two completed first"),

}
}

5tokio::select!

https://docs.rs/tokio/latest/tokio/macro.select.html


loop tokio::select!
#[tokio::main]
async fn main() {

let mut count = 0;
let t1 = task(300u64);
let t2 = task(200u64);
tokio::pin!(t1, t2);
loop {

if count > 5 {
break;

}
tokio::select! {

() = &mut t1 => println!("task one completed first"),
() = &mut t2 => println!("task two completed first"),

}
count += 1;

}
}



loop futures::select!
#[tokio::main]
async fn main() {

let mut count = 0;
let t1 = task(300u64).fuse();
let t2 = task(200u64).fuse();
tokio::pin!(t1, t2);
loop {

if count > 5 {
break;

}
futures::select! {

() = &mut t1 => println!("task one completed first"),
() = &mut t2 => println!("task two completed first"),

}
count += 1;

}
}



Stream6

pub trait Stream {
type Item;

// Required method
fn poll_next(

self: Pin<&mut Self>,
cx: &mut Context<'_>

) -> Poll<Option<Self::Item>>;
}

6Guided tour of Streams

https://www.qovery.com/blog/a-guided-tour-of-streams-in-rust/


async-stream
fn zero_to_three() -> impl Stream<Item = u32> {

stream! {
for i in 0..3 {

yield i;
}

}
}

#[tokio::main]
async fn main() {

let s = zero_to_three();
pin_mut!(s); // needed for iteration

while let Some(value) = s.next().await {
println!("got {}", value);

}
}



futures::select! vs tokio::select!

▶ futures::select!

▶ tokio::select!
▶ SO - What’s the difference between futures::select and tokio::select?
▶ Provide select! macro

https://docs.rs/futures/latest/futures/macro.select.html
https://docs.rs/tokio/latest/tokio/macro.select.html
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect


futures::select! vs tokio::select!

▶ futures::select!
▶ tokio::select!

▶ SO - What’s the difference between futures::select and tokio::select?
▶ Provide select! macro

https://docs.rs/futures/latest/futures/macro.select.html
https://docs.rs/tokio/latest/tokio/macro.select.html
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect


futures::select! vs tokio::select!

▶ futures::select!
▶ tokio::select!
▶ SO - What’s the difference between futures::select and tokio::select?

▶ Provide select! macro

https://docs.rs/futures/latest/futures/macro.select.html
https://docs.rs/tokio/latest/tokio/macro.select.html
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect


futures::select! vs tokio::select!

▶ futures::select!
▶ tokio::select!
▶ SO - What’s the difference between futures::select and tokio::select?
▶ Provide select! macro

https://docs.rs/futures/latest/futures/macro.select.html
https://docs.rs/tokio/latest/tokio/macro.select.html
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect


Multiple futures

▶ FuturesUnordered

▶ FuturesOrdered
▶ Must read

▶ FuturesUnordered and the order of futures

https://docs.rs/futures/latest/futures/stream/struct.FuturesUnordered.html
https://docs.rs/futures/latest/futures/stream/struct.FuturesOrdered.html
https://without.boats/blog/futures-unordered/


Multiple futures

▶ FuturesUnordered
▶ FuturesOrdered

▶ Must read

▶ FuturesUnordered and the order of futures

https://docs.rs/futures/latest/futures/stream/struct.FuturesUnordered.html
https://docs.rs/futures/latest/futures/stream/struct.FuturesOrdered.html
https://without.boats/blog/futures-unordered/


Multiple futures

▶ FuturesUnordered
▶ FuturesOrdered
▶ Must read

▶ FuturesUnordered and the order of futures

https://docs.rs/futures/latest/futures/stream/struct.FuturesUnordered.html
https://docs.rs/futures/latest/futures/stream/struct.FuturesOrdered.html
https://without.boats/blog/futures-unordered/


Multiple futures

▶ FuturesUnordered
▶ FuturesOrdered
▶ Must read

▶ FuturesUnordered and the order of futures

https://docs.rs/futures/latest/futures/stream/struct.FuturesUnordered.html
https://docs.rs/futures/latest/futures/stream/struct.FuturesOrdered.html
https://without.boats/blog/futures-unordered/


Cancellation

▶ futures::future::Abortable

https://docs.rs/futures/latest/futures/future/struct.Abortable.html


Pitfalls

▶ Blocking in async

▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking

▶ TLDR: Async code should never spend a long time without reaching an .await
▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety

▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await

▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis

▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation

▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async

▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns

▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams

▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Pitfalls

▶ Blocking in async
▶ Async: What’s blocking
▶ TLDR: Async code should never spend a long time without reaching an .await

▶ Cancellation safety
▶ Holding a Mutex across an await
▶ Must read

▶ Async cancellation: a case study of pub-sub in mini-redis
▶ Yoshua Wuyts - Async Cancellation
▶ Common mistakes with Rust Async
▶ Rust tokio task cancellation patterns
▶ for await and the battle of buffered streams
▶ Mutex without lock, Queue without push: cancel safety in lilos

https://ryhl.io/blog/async-what-is-blocking/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://blog.yoshuawuyts.com/async-cancellation-1/
https://www.qovery.com/blog/common-mistakes-with-rust-async/
https://cybernetist.com/2024/04/19/rust-tokio-task-cancellation-patterns/
https://tmandry.gitlab.io/blog/posts/for-await-buffered-streams/
https://cliffle.com/blog/lilos-cancel-safety/


Cancellation safety with select!

So the TLDR

▶ futures in select! other than the future that yields Poll::Ready get dropped

▶ futures which own some form of state aren’t cancellation safe, since the owned
state gets dropped when another future returns Poll::Ready



Cancellation safety with select!

So the TLDR

▶ futures in select! other than the future that yields Poll::Ready get dropped
▶ futures which own some form of state aren’t cancellation safe, since the owned

state gets dropped when another future returns Poll::Ready



Pinning
use std::pin::Pin;
use pin_project::pin_project;

#[pin_project]
struct Struct<T, U> {

#[pin]
pinned: T,
unpinned: U,

}

impl<T, U> Struct<T, U> {
fn method(self: Pin<&mut Self>) {

let this = self.project();
let _: Pin<&mut T> = this.pinned; // Pinned reference to the field
let _: &mut U = this.unpinned; // Normal reference to the field

}
}



Pinning

▶ Must read

▶ std::pin
▶ Pin and suffering
▶ Pin, Unpin, and why Rust needs them
▶ Async Book - Pinning
▶ pin_project

https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
https://fasterthanli.me/articles/pin-and-suffering
https://blog.cloudflare.com/pin-and-unpin-in-rust/
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://docs.rs/pin-project/latest/pin_project/


Pinning

▶ Must read
▶ std::pin

▶ Pin and suffering
▶ Pin, Unpin, and why Rust needs them
▶ Async Book - Pinning
▶ pin_project

https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
https://fasterthanli.me/articles/pin-and-suffering
https://blog.cloudflare.com/pin-and-unpin-in-rust/
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://docs.rs/pin-project/latest/pin_project/


Pinning

▶ Must read
▶ std::pin
▶ Pin and suffering

▶ Pin, Unpin, and why Rust needs them
▶ Async Book - Pinning
▶ pin_project

https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
https://fasterthanli.me/articles/pin-and-suffering
https://blog.cloudflare.com/pin-and-unpin-in-rust/
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://docs.rs/pin-project/latest/pin_project/


Pinning

▶ Must read
▶ std::pin
▶ Pin and suffering
▶ Pin, Unpin, and why Rust needs them

▶ Async Book - Pinning
▶ pin_project

https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
https://fasterthanli.me/articles/pin-and-suffering
https://blog.cloudflare.com/pin-and-unpin-in-rust/
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://docs.rs/pin-project/latest/pin_project/


Pinning

▶ Must read
▶ std::pin
▶ Pin and suffering
▶ Pin, Unpin, and why Rust needs them
▶ Async Book - Pinning

▶ pin_project

https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
https://fasterthanli.me/articles/pin-and-suffering
https://blog.cloudflare.com/pin-and-unpin-in-rust/
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://docs.rs/pin-project/latest/pin_project/


Pinning

▶ Must read
▶ std::pin
▶ Pin and suffering
▶ Pin, Unpin, and why Rust needs them
▶ Async Book - Pinning
▶ pin_project

https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
https://fasterthanli.me/articles/pin-and-suffering
https://blog.cloudflare.com/pin-and-unpin-in-rust/
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://docs.rs/pin-project/latest/pin_project/


More references

▶ Meetup code samples

▶ Tokio tutorial
▶ Tokio internals
▶ How Rust optimizes async/await - I
▶ How Rust optimizes async/await - II

https://git.sanchayanmaity.net/sanchayanmaity/async-await-rust-meetup-examples
https://tokio.rs/tokio/tutorial
https://cafbit.com/post/tokio_internals/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://tmandry.gitlab.io/blog/posts/optimizing-await-2/


More references

▶ Meetup code samples
▶ Tokio tutorial

▶ Tokio internals
▶ How Rust optimizes async/await - I
▶ How Rust optimizes async/await - II

https://git.sanchayanmaity.net/sanchayanmaity/async-await-rust-meetup-examples
https://tokio.rs/tokio/tutorial
https://cafbit.com/post/tokio_internals/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://tmandry.gitlab.io/blog/posts/optimizing-await-2/


More references

▶ Meetup code samples
▶ Tokio tutorial
▶ Tokio internals

▶ How Rust optimizes async/await - I
▶ How Rust optimizes async/await - II

https://git.sanchayanmaity.net/sanchayanmaity/async-await-rust-meetup-examples
https://tokio.rs/tokio/tutorial
https://cafbit.com/post/tokio_internals/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://tmandry.gitlab.io/blog/posts/optimizing-await-2/


More references

▶ Meetup code samples
▶ Tokio tutorial
▶ Tokio internals
▶ How Rust optimizes async/await - I

▶ How Rust optimizes async/await - II

https://git.sanchayanmaity.net/sanchayanmaity/async-await-rust-meetup-examples
https://tokio.rs/tokio/tutorial
https://cafbit.com/post/tokio_internals/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://tmandry.gitlab.io/blog/posts/optimizing-await-2/


More references

▶ Meetup code samples
▶ Tokio tutorial
▶ Tokio internals
▶ How Rust optimizes async/await - I
▶ How Rust optimizes async/await - II

https://git.sanchayanmaity.net/sanchayanmaity/async-await-rust-meetup-examples
https://tokio.rs/tokio/tutorial
https://cafbit.com/post/tokio_internals/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://tmandry.gitlab.io/blog/posts/optimizing-await-2/


Questions

▶ Reach out on

▶ Email: me@sanchayanmaity.net
▶ Mastodon: sanchayanmaity.com
▶ Telegram: https://t.me/SanchayanMaity
▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://sanchayanmaity.net/


Questions

▶ Reach out on
▶ Email: me@sanchayanmaity.net

▶ Mastodon: sanchayanmaity.com
▶ Telegram: https://t.me/SanchayanMaity
▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://sanchayanmaity.net/


Questions

▶ Reach out on
▶ Email: me@sanchayanmaity.net
▶ Mastodon: sanchayanmaity.com

▶ Telegram: https://t.me/SanchayanMaity
▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://sanchayanmaity.net/


Questions

▶ Reach out on
▶ Email: me@sanchayanmaity.net
▶ Mastodon: sanchayanmaity.com
▶ Telegram: https://t.me/SanchayanMaity

▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://sanchayanmaity.net/


Questions

▶ Reach out on
▶ Email: me@sanchayanmaity.net
▶ Mastodon: sanchayanmaity.com
▶ Telegram: https://t.me/SanchayanMaity
▶ Blog: sanchayanmaity.net

https://sanchayanmaity.com/@sanchayan
https://sanchayanmaity.net/

