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Future1

use std::future::Future;
use std::pin::Pin;
use std::task::Context;

pub trait Future {
type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)

-> Poll<Self::Output>;
}

pub enum Poll<T> {
Ready(T),
Pending,

}

1Associated types

https://doc.rust-lang.org/reference/items/associated-items.html


Example

async fn hello() {
println!("Hello from async");

}

fn main() {
hello();
println!("Hello from main");

}



Where’s the future

async fn give_number() -> u32 {
100

}



Sugar town2

fn give_number() -> impl Future<Output = u32> {
GiveNumberFuture

}

struct GiveNumberFuture {}

impl Future for GiveNumberFuture {
type Output = u32;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output> {

Poll::Ready(100)
}

}

2Syntactic sugar for Future

https://ruspiro.github.io/ruspiro-async-book/02-03-async.html


Runtimes
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Example

use futures::executor::block_on;

async fn hello() {
println!("hello, world!");

}

fn main() {
block_on(hello());
println!("Hello from main");

}



Example

async fn hello() {
println!("Hello from async");

}

#[tokio::main]
async fn main() {

hello().await;
println!("Hello from main");

}
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join

use futures::future;

#[tokio::main]
async fn main() {

let a = async { "Future 1" };
let b = async { "Future 2" };
let pair = future::join(a, b);

println!("{:?}", pair.await);
}



join_all
use futures::future::join_all;
async fn hello(msg: String) -> String {

msg
}

#[tokio::main]
async fn main() {

let futures = vec![
hello("Future 1".to_string()),
hello("Future 2".to_string()),
hello("Future 3".to_string()),
hello("Future 4".to_string()),

];

println!("{:?}", join_all(futures).await);
}



JoinSet

use tokio::task::JoinSet;

#[tokio::main]
async fn main() {

let mut set = JoinSet::new();
for i in 0..10 {

set.spawn(async move { i });
}

while let Some(res) = set.join_next().await {
println!("{}", res.unwrap());

}
}



future::select

pub fn select<A, B>(future1: A, future2: B) -> Select<A, B>
where

A: Future + Unpin,
B: Future + Unpin,



future::select

use futures::{future, future::Either, future::FutureExt, select};
use tokio::time::{sleep, Duration};

async fn task1(delay: u64) -> u64 {
sleep(Duration::from_millis(delay)).await;
delay

}

async fn task2(delay: u64) -> String {
sleep(Duration::from_millis(delay)).await;
"Hello".to_string()

}



future::select

#[tokio::main]
async fn main() {

let t1 = task1(200u64).fuse();
let t2 = task2(300u64).fuse();

tokio::pin!(t1, t2);

match future::select(t1, t2).await {
Either::Left((value1, _)) => println!("{}", value1),
Either::Right((value2, _)) => println!("{}", value2),

};
}



futures::select!4

use futures::{future::FutureExt, pin_mut, select};
use tokio::time::{sleep, Duration};
async fn task(delay: u64) {

sleep(Duration::from_millis(delay)).await;
}

#[tokio::main]
async fn main() {

let t1 = task(300u64).fuse();
let t2 = task(200u64).fuse();
pin_mut!(t1, t2);
select! {

() = t1 => println!("task one completed first"),
() = t2 => println!("task two completed first"),

}
}

4futures::select!

https://docs.rs/futures/latest/futures/macro.select.html


tokio::select!5

use tokio::time::{sleep, Duration};
async fn task(delay: u64) {

sleep(Duration::from_millis(delay)).await;
}

#[tokio::main]
async fn main() {

let t1 = task(300u64);
let t2 = task(200u64);
tokio::pin!(t1, t2);
tokio::select! {

() = t1 => println!("task one completed first"),
() = t2 => println!("task two completed first"),

}
}

5tokio::select!

https://docs.rs/tokio/latest/tokio/macro.select.html


loop tokio::select!
#[tokio::main]
async fn main() {

let mut count = 0;
let t1 = task(300u64);
let t2 = task(200u64);
tokio::pin!(t1, t2);
loop {

if count > 5 {
break;

}
tokio::select! {

() = &mut t1 => println!("task one completed first"),
() = &mut t2 => println!("task two completed first"),

}
count += 1;

}
}



loop futures::select!
#[tokio::main]
async fn main() {

let mut count = 0;
let t1 = task(300u64).fuse();
let t2 = task(200u64).fuse();
tokio::pin!(t1, t2);
loop {

if count > 5 {
break;

}
futures::select! {

() = &mut t1 => println!("task one completed first"),
() = &mut t2 => println!("task two completed first"),

}
count += 1;

}
}



Stream6

pub trait Stream {
type Item;

// Required method
fn poll_next(

self: Pin<&mut Self>,
cx: &mut Context<'_>

) -> Poll<Option<Self::Item>>;
}

6Guided tour of Streams

https://www.qovery.com/blog/a-guided-tour-of-streams-in-rust/


async-stream
fn zero_to_three() -> impl Stream<Item = u32> {

stream! {
for i in 0..3 {

yield i;
}

}
}

#[tokio::main]
async fn main() {

let s = zero_to_three();
pin_mut!(s); // needed for iteration

while let Some(value) = s.next().await {
println!("got {}", value);

}
}



futures::select! vs tokio::select!

▶ futures::select!

▶ tokio::select!
▶ SO - What’s the difference between futures::select and tokio::select?
▶ Provide select! macro

https://docs.rs/futures/latest/futures/macro.select.html
https://docs.rs/tokio/latest/tokio/macro.select.html
https://stackoverflow.com/questions/60811657/what-is-the-difference-between-futuresselect-and-tokioselect
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Cancellation

▶ futures::future::Abortable

https://docs.rs/futures/latest/futures/future/struct.Abortable.html
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Pinning
use std::pin::Pin;
use pin_project::pin_project;

#[pin_project]
struct Struct<T, U> {

#[pin]
pinned: T,
unpinned: U,

}

impl<T, U> Struct<T, U> {
fn method(self: Pin<&mut Self>) {

let this = self.project();
let _: Pin<&mut T> = this.pinned; // Pinned reference to the field
let _: &mut U = this.unpinned; // Normal reference to the field

}
}
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