
Effect Systems in Haskell - Part II

Sanchayan Maity



Agenda

▶ Cover two papers on Effect Systems.

▶ Generalized Evidence Passing for Effect Handlers1

▶ Effect Handlers in Haskell, Evidently2

▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ How to use effect systems
▶ Comparison of effect system libraries or how to choose one

1Generalized Evidence Passing for Effect Handlers
2Effect Handlers in Haskell, evidently

https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf


Agenda

▶ Cover two papers on Effect Systems.
▶ Generalized Evidence Passing for Effect Handlers1

▶ Effect Handlers in Haskell, Evidently2

▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ How to use effect systems
▶ Comparison of effect system libraries or how to choose one

1Generalized Evidence Passing for Effect Handlers

2Effect Handlers in Haskell, evidently

https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf


Agenda

▶ Cover two papers on Effect Systems.
▶ Generalized Evidence Passing for Effect Handlers1

▶ Effect Handlers in Haskell, Evidently2

▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ How to use effect systems
▶ Comparison of effect system libraries or how to choose one

1Generalized Evidence Passing for Effect Handlers
2Effect Handlers in Haskell, evidently

https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf


Agenda

▶ Cover two papers on Effect Systems.
▶ Generalized Evidence Passing for Effect Handlers1

▶ Effect Handlers in Haskell, Evidently2

▶ Some sections today’s discussion isn’t going to cover

▶ Efficiency/Performance of the library or effect system itself
▶ How to use effect systems
▶ Comparison of effect system libraries or how to choose one

1Generalized Evidence Passing for Effect Handlers
2Effect Handlers in Haskell, evidently

https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf


Agenda

▶ Cover two papers on Effect Systems.
▶ Generalized Evidence Passing for Effect Handlers1

▶ Effect Handlers in Haskell, Evidently2

▶ Some sections today’s discussion isn’t going to cover
▶ Efficiency/Performance of the library or effect system itself

▶ How to use effect systems
▶ Comparison of effect system libraries or how to choose one

1Generalized Evidence Passing for Effect Handlers
2Effect Handlers in Haskell, evidently

https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf


Agenda

▶ Cover two papers on Effect Systems.
▶ Generalized Evidence Passing for Effect Handlers1

▶ Effect Handlers in Haskell, Evidently2

▶ Some sections today’s discussion isn’t going to cover
▶ Efficiency/Performance of the library or effect system itself
▶ How to use effect systems

▶ Comparison of effect system libraries or how to choose one

1Generalized Evidence Passing for Effect Handlers
2Effect Handlers in Haskell, evidently

https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf


Agenda

▶ Cover two papers on Effect Systems.
▶ Generalized Evidence Passing for Effect Handlers1

▶ Effect Handlers in Haskell, Evidently2

▶ Some sections today’s discussion isn’t going to cover
▶ Efficiency/Performance of the library or effect system itself
▶ How to use effect systems
▶ Comparison of effect system libraries or how to choose one

1Generalized Evidence Passing for Effect Handlers
2Effect Handlers in Haskell, evidently

https://dl.acm.org/doi/pdf/10.1145/3473576
https://xnning.github.io/papers/haskell-evidently.pdf


Recap, what’s it all about

▶ Separate syntax from semantics

▶ Interpret your abstract syntax tree in various ways
▶ Not losing performance while having both



Recap, what’s it all about

▶ Separate syntax from semantics
▶ Interpret your abstract syntax tree in various ways

▶ Not losing performance while having both



Recap, what’s it all about

▶ Separate syntax from semantics
▶ Interpret your abstract syntax tree in various ways
▶ Not losing performance while having both



Recap, why effect systems

▶ Monads to model effects but monads don’t compose3

▶ transformers/mtl has limitations

▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies

class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

3Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Recap, why effect systems

▶ Monads to model effects but monads don’t compose3

▶ transformers/mtl has limitations

▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies

class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

3Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Recap, why effect systems

▶ Monads to model effects but monads don’t compose3

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid

▶ Doesn’t allow handling something like Reader Int (Reader String) due to
functional dependencies

class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

3Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Recap, why effect systems

▶ Monads to model effects but monads don’t compose3

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies
class Monad m => MonadReader r m | m -> r

▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

3Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Recap, why effect systems

▶ Monads to model effects but monads don’t compose3

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies
class Monad m => MonadReader r m | m -> r
▶ More than a few effects in stack become unwieldy

▶ n-square instances problem

3Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Recap, why effect systems

▶ Monads to model effects but monads don’t compose3

▶ transformers/mtl has limitations
▶ Monad transformer stacks are rigid
▶ Doesn’t allow handling something like Reader Int (Reader String) due to

functional dependencies
class Monad m => MonadReader r m | m -> r
▶ More than a few effects in stack become unwieldy
▶ n-square instances problem

3Composing Monads by Mark Jones and Luc Duponcheel

https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf


Evidence passing based effect system libraries

▶ EvEff

▶ MpEff
▶ speff
▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Evidence passing based effect system libraries

▶ EvEff
▶ MpEff

▶ speff
▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Evidence passing based effect system libraries

▶ EvEff
▶ MpEff
▶ speff

▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Evidence passing based effect system libraries

▶ EvEff
▶ MpEff
▶ speff
▶ cleff based on ReaderT IO

▶ effectful based on ReaderT IO
▶ others?



Evidence passing based effect system libraries

▶ EvEff
▶ MpEff
▶ speff
▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO

▶ others?



Evidence passing based effect system libraries

▶ EvEff
▶ MpEff
▶ speff
▶ cleff based on ReaderT IO
▶ effectful based on ReaderT IO
▶ others?



Some myths4

▶ Many extensible effects libraries are implemented with free(r) monads (True)

▶ Therefore extensible effects = free(r) monads (False)
▶ Free(r) monads require certain mathematical concepts to grasp (True)
▶ Free(r) monads don’t have very good performance (True, to some extent)
▶ Therefore extensible effects are slow, ivory-towerish toys (False)

4ReaderT pattern is just extensible effects

https://喵.世界/2022/02/03/readert-is-extensible-effects/


Some myths4

▶ Many extensible effects libraries are implemented with free(r) monads (True)
▶ Therefore extensible effects = free(r) monads (False)

▶ Free(r) monads require certain mathematical concepts to grasp (True)
▶ Free(r) monads don’t have very good performance (True, to some extent)
▶ Therefore extensible effects are slow, ivory-towerish toys (False)

4ReaderT pattern is just extensible effects

https://喵.世界/2022/02/03/readert-is-extensible-effects/


Some myths4

▶ Many extensible effects libraries are implemented with free(r) monads (True)
▶ Therefore extensible effects = free(r) monads (False)
▶ Free(r) monads require certain mathematical concepts to grasp (True)

▶ Free(r) monads don’t have very good performance (True, to some extent)
▶ Therefore extensible effects are slow, ivory-towerish toys (False)

4ReaderT pattern is just extensible effects

https://喵.世界/2022/02/03/readert-is-extensible-effects/


Some myths4

▶ Many extensible effects libraries are implemented with free(r) monads (True)
▶ Therefore extensible effects = free(r) monads (False)
▶ Free(r) monads require certain mathematical concepts to grasp (True)
▶ Free(r) monads don’t have very good performance (True, to some extent)

▶ Therefore extensible effects are slow, ivory-towerish toys (False)

4ReaderT pattern is just extensible effects

https://喵.世界/2022/02/03/readert-is-extensible-effects/


Some myths4

▶ Many extensible effects libraries are implemented with free(r) monads (True)
▶ Therefore extensible effects = free(r) monads (False)
▶ Free(r) monads require certain mathematical concepts to grasp (True)
▶ Free(r) monads don’t have very good performance (True, to some extent)
▶ Therefore extensible effects are slow, ivory-towerish toys (False)

4ReaderT pattern is just extensible effects

https://喵.世界/2022/02/03/readert-is-extensible-effects/


Effects can be implemented in various way

▶ free monads

▶ ReaderT IO
▶ CPS
▶ delimited continuations



Effects can be implemented in various way

▶ free monads
▶ ReaderT IO

▶ CPS
▶ delimited continuations



Effects can be implemented in various way

▶ free monads
▶ ReaderT IO
▶ CPS

▶ delimited continuations



Effects can be implemented in various way

▶ free monads
▶ ReaderT IO
▶ CPS
▶ delimited continuations



What’s the gist

▶ How do you pass the handler for the effect?



Generalized control flow

▶ Languages that expose a yield primitive actually have a way to access delimited
continuations! Central result of the paper by James-Sabry 56.

5Yield: Mainstream Delimited Continuations
6Delimited Continuations are all you need

https://legacy.cs.indiana.edu/~sabry/papers/yield.pdf
https://www.youtube.com/watch?v=uRbqLGj_6mI


WTH are delimited continuations

▶ Delimited Continuations for Everyone7

7Delimited Continuations for Everyone

https://github.com/papers-we-love/pwlconf-info/tree/master/2017/kenichi-asai


How does one define an effect

data Reader a e ans = Reader { ask :: !(Op () a e ans)
}

data State a e ans = State { get :: !(Op () a e ans)
, put :: !(Op a () e ans)
}



Multi-prompt delimited control
data Ctl e a = Pure { result :: !a }

| forall h b e' ans.
Control {

-- prompt marker to yield to (in type context `::ans`)
marker :: Marker h e' ans,

-- the final action, just needs the resumption (:: b -> Eff e' ans) to be evaluated.
op :: !((b -> Eff e' ans) -> Eff e' ans),

-- the (partially) build up resumption;
-- (b -> Eff e a) :~: (b -> Eff e' ans)` by the time
-- we reach the prompt

cont :: !(b -> Eff e a) }

data Context e where
CCons :: !(Marker h e' ans) -> !(h e' ans) -> !(ContextT e e')

-> !(Context e) -> Context (h :* e)
CNil :: Context ()

newtype Eff e a = Eff { unEff :: Context e -> Ctl e a }



Key ideas

▶ Multi Prompt

▶ Evidence Passing
▶ Tail Resumptive Operations
▶ Bubbling Yields
▶ Short cut resumptions
▶ Monadic Translation
▶ Bind-inlining and Join-Point Sharing



Key ideas

▶ Multi Prompt
▶ Evidence Passing

▶ Tail Resumptive Operations
▶ Bubbling Yields
▶ Short cut resumptions
▶ Monadic Translation
▶ Bind-inlining and Join-Point Sharing



Key ideas

▶ Multi Prompt
▶ Evidence Passing
▶ Tail Resumptive Operations

▶ Bubbling Yields
▶ Short cut resumptions
▶ Monadic Translation
▶ Bind-inlining and Join-Point Sharing



Key ideas

▶ Multi Prompt
▶ Evidence Passing
▶ Tail Resumptive Operations
▶ Bubbling Yields

▶ Short cut resumptions
▶ Monadic Translation
▶ Bind-inlining and Join-Point Sharing



Key ideas

▶ Multi Prompt
▶ Evidence Passing
▶ Tail Resumptive Operations
▶ Bubbling Yields
▶ Short cut resumptions

▶ Monadic Translation
▶ Bind-inlining and Join-Point Sharing



Key ideas

▶ Multi Prompt
▶ Evidence Passing
▶ Tail Resumptive Operations
▶ Bubbling Yields
▶ Short cut resumptions
▶ Monadic Translation

▶ Bind-inlining and Join-Point Sharing



Key ideas

▶ Multi Prompt
▶ Evidence Passing
▶ Tail Resumptive Operations
▶ Bubbling Yields
▶ Short cut resumptions
▶ Monadic Translation
▶ Bind-inlining and Join-Point Sharing



Dig in

▶ Dig in to the paper!



Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023

▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops

▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations

▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie

▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations

▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks

▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl

▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell

▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers

▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml

▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Resources

▶ Alexis King on “Delimited Continuations, Demystified” @ZuriHac2023
▶ GHC Proposal: Delimited continuation primops
▶ Delimited Continuations
▶ Efficient Compilation of Algebraic Effect Handlers - Ningning Xie
▶ From Folklore to Fact: Comparing Implementations of Stacks and Continuations
▶ Compiler and Runtime Support for Continuation Marks
▶ Capturing the Future by Replaying the Past Functional Pearl
▶ From Delimited Continuations to Algebraic Effects in Haskell
▶ Concurrent System Programming with Effect Handlers
▶ Eff Directly in OCaml
▶ Retrofitting Effect Handlers onto OCaml

https://www.youtube.com/watch?v=DRFsodbxHQo
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://calwoo.github.io/posts/2020-02-03-delimited.html
https://www.youtube.com/watch?v=tWLPrPfb4_U
https://kavon.farvard.in/papers/pldi20-stacks.pdf
https://www-old.cs.utah.edu/plt/publications/pldi20-fd.pdf
https://arxiv.org/pdf/1710.10385.pdf
https://blog.poisson.chat/posts/2023-01-02-del-cont-examples.html
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://arxiv.org/pdf/1812.11664.pdf
https://kcsrk.info/papers/drafts/retro-concurrency.pdf


Questions?

▶ Reach out on

▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net

▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan

▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net

▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr

▶ t.me/SanchayanMaity



Questions?

▶ Reach out on
▶ Email: sanchayan@sanchayanmaity.net
▶ Mastodon: https://sanchayanmaity.com/@sanchayan
▶ Blog: https://sanchayanmaity.net
▶ Telegram:

▶ t.me/fpncr
▶ t.me/SanchayanMaity


