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» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers
» Freer Monads, More Extensible Effects

> Related paper Reflection Without Remorse

» Some sections today's discussion isn't going to cover
> Efficiency/Performance of the library or effect system itself
» For the sake of time, focus more on the implementation
» Comparison of effect system libraries or how to choose one
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Why effect systems ™

» Monads to model effects but monads don’t compose!
» transformers/mtl has limitations
» Monad transformer stacks are rigid
» Doesn't allow handling something like Reader Int (Reader String) due to
functional dependencies
class Monad m => MonadReader rm | m -> r
» More than a few effects in stack become unwieldy
P n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel
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Effect system libraries

> freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

> polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al

> fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by
Wu, Schrijvers et al

> cleff based on ReaderT IO

> effectful based on ReaderT I0

» others?

S



Free monads »

Given a Functor f, Free f is a Free monad.

data Free f a = Pure a
| Free (f (Free f a))

A Monad is something that “computes” when monadic context is collapsed by join ::
m (m a) -> m a (recalling that >>= can be defined as x >>= y = join (fmap y
x)). This is how Monads carry context through a sequential chain of computations:
because at each point in the series, the context from the previous call is collapsed with
the next.

A free monad satisfies all the Monad laws, but doesn't do any collapsing (that’s the
computation). It just builds up a nested series of contexts. The user who creates such a
free monadic value is responsible for doing something with those nested contexts, so
that the meaning of such a composition can be deferred until after the monadic value
has been created.?

2 John Wiegley on Stack Overflow.


https://stackoverflow.com/a/13388966

Huh, what did that mean

» Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)

S
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Huh, what did that mean DS

» Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

» fmap is performing substitution and join is dealing with any re-normalization.

» Done this way, (m >>= £) on the Maybe monad would first fmap to obtain Just
(Just a), Just Nothing or Nothing before flattening.

» In the Maybe a case, the association of binds is largely immaterial, the
normalization pass fixes things up to basically the same size.

» In Free monad, the monad is purely defined in terms of substitution.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Free monads performance PSS

» Vanilla free monads don’t have great performance.

newtype FT f m a =
FT { runFT :: forall r. (a -=>mr) -> (forall x. (x >mr) > f x ->mr)
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» Solutions like Codensity monad transformer and Church encoded free monad
(ot 34
exist.
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Free monads performance DS

» Vanilla free monads don’t have great performance.
» Solutions like Codensity monad transformer and Church encoded free monad
(ot 34
exist.

newtype FT f m a =
FT { runFT :: forall r. (a ->mr) -> (forall x. (x ->mr) >fx ->mr)

» Think of Codensity as a type level construction which ensures that you end up
with a right associated bind.>

3 Asymptotic Improvement of Computations over Free Monads - Janis Voigtlander
*The Free and The Furious: And by ‘Furious’ | mean Codensity. - raichoo
®Free Monads for less - Edward Kmett


https://www.youtube.com/watch?v=EiIZlX_k89Y
https://ekmett.github.io/reader/2011/free-monads-for-less-2/index.html
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Reflection without remorse DS

> A left associated expression is asymptotically slower than the equivalent right
associated expression. O(n?) vs O(n) respectively.

» What's meant by reflection? Build and observe.

> Efficient data structures give asymptotic improvement for problematic occurrences
of build and observe pattern like monads and monadic reflection.
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Freer monads DS

» Improves on extensible effects

data FFree f a where
Pure :: a =+ FFree f a
Impure :: f x + (x + FFree f a) - FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.
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Freer monads ™

» Improves on extensible effects

> How?
» Relaxes the Functor constraint, becoming Freer!
» No need for Functor and Typeable on Union

> freer and freer-simple are based on Freer monads

data FFree f a where
Pure :: a =+ FFree f a
Impure :: f x =+ (x + FFree f a) - FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads »

P> The continuation can now be accessed directly rather than via fmap, which has to
rebuild the mapped data structure.

class Member t r where
inj :: t v => Union r v
prj :: Union r v -> Maybe (t v)

and

data FEFree r a where
Pure :: a -+ FEFree r a
Impure :: Union r x + (x + FEFree r a) - FEFree r a



Freer monads »

P> The continuation can now be accessed directly rather than via fmap, which has to
rebuild the mapped data structure.
» The explicit continuation of FFree also makes it easier to change its representation.

class Member t r where
inj :: t v => Union r v
prj :: Union r v -> Maybe (t v)

and

data FEFree r a where
Pure :: a -+ FEFree r a
Impure :: Union r x =+ (x + FEFree r a) - FEFree r a



Freer monads »

» FEFree r becomes Eff r, where r is the list of effect labels.

type Arr r ab=a > Eff r b

data FTCQueue m a b where
Leaf :: (a -=> m b) -> FTCQueue m a b
Node :: FTCQueue m a x —-> FTCQueue m x b -> FTCQueue m a b

type Arrs r a b = FTCQueue (Eff r) a b
data Eff r a where

Pure :: a =+ Eff r a
Impure :: Union r x + Arrs r x a =+ Eff r a



Freer monads »

» FEFree r becomes Eff r, where r is the list of effect labels.
» The request continuation which receives the reply x and works towards the final
answer a, then has the type x =+ Eff r a.

type Arr r ab=a > Eff r b
data FTCQueue m a b where

Leaf :: (a -=> m b) -> FTCQueue m a b
Node :: FTCQueue m a x —-> FTCQueue m x b -> FTCQueue m a b

type Arrs r a b = FTCQueue (Eff r) a b
data Eff r a where

Pure :: a » Eff r a
Impure :: Union r x + Arrs r x a =+ Eff r a
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