Effect Systems in Haskell - Part |

Sanchayan Maity

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers
» Freer Monads, More Extensible Effects

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers
» Freer Monads, More Extensible Effects

> Related paper Reflection Without Remorse

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers
» Freer Monads, More Extensible Effects

> Related paper Reflection Without Remorse
» Some sections today's discussion isn't going to cover

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers
» Freer Monads, More Extensible Effects

> Related paper Reflection Without Remorse

» Some sections today's discussion isn't going to cover
> Efficiency/Performance of the library or effect system itself

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers
» Freer Monads, More Extensible Effects

> Related paper Reflection Without Remorse

» Some sections today's discussion isn't going to cover
> Efficiency/Performance of the library or effect system itself
» For the sake of time, focus more on the implementation

S



Agenda

» Cover two papers on Effect Systems by Oleg Kiselyov
» Extensible Effects - An Alternative to Monad Transformers
» Freer Monads, More Extensible Effects

> Related paper Reflection Without Remorse

» Some sections today's discussion isn't going to cover
> Efficiency/Performance of the library or effect system itself
» For the sake of time, focus more on the implementation
» Comparison of effect system libraries or how to choose one

S



What's it all about

» Separate syntax from semantics

S



What's it all about

» Separate syntax from semantics
P> Interpret your abstract syntax tree in various ways

S



What's it all about

» Separate syntax from semantics
P> Interpret your abstract syntax tree in various ways
> Not losing performance while having both

S



Why effect systems

» Monads to model effects but monads don’t compose!

1Composing Monads by Mark Jones and Luc Duponcheel

S


https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Why effect systems

» Monads to model effects but monads don’t compose!
» transformers/mtl has limitations

class Monad m => MonadReader rm | m —> r

1Composing Monads by Mark Jones and Luc Duponcheel

S


https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Why effect systems

» Monads to model effects but monads don’t compose!

» transformers/mtl has limitations
» Monad transformer stacks are rigid

class Monad m => MonadReader rm | m -> r

1Composing Monads by Mark Jones and Luc Duponcheel

S


https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Why effect systems ™

» Monads to model effects but monads don’t compose!
» transformers/mtl has limitations
» Monad transformer stacks are rigid
» Doesn't allow handling something like Reader Int (Reader String) due to
functional dependencies
class Monad m => MonadReader rm | m -> r

1Composing Monads by Mark Jones and Luc Duponcheel


https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Why effect systems ™

» Monads to model effects but monads don’t compose!
» transformers/mtl has limitations
» Monad transformer stacks are rigid
» Doesn't allow handling something like Reader Int (Reader String) due to
functional dependencies
class Monad m => MonadReader rm | m -> r
» More than a few effects in stack become unwieldy

1Composing Monads by Mark Jones and Luc Duponcheel


https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Why effect systems ™

» Monads to model effects but monads don’t compose!
» transformers/mtl has limitations
» Monad transformer stacks are rigid
» Doesn't allow handling something like Reader Int (Reader String) due to
functional dependencies
class Monad m => MonadReader rm | m -> r
» More than a few effects in stack become unwieldy
P n-square instances problem

1Composing Monads by Mark Jones and Luc Duponcheel


https://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Effect system libraries

> freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

S



Effect system libraries

> freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov
> polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al

S



Effect system libraries

> freer-simple based on Extensible Effects and Freer Monads, More Extensible

Effects by Oleg Kiselyov
> polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al
> fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by

Wu, Schrijvers et al

S



Effect system libraries

> freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

> polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al

> fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by
Wu, Schrijvers et al

> cleff based on ReaderT IO

S



Effect system libraries

> freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

> polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al

> fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by
Wu, Schrijvers et al

> cleff based on ReaderT IO

> effectful based on ReaderT I0

S



Effect system libraries

> freer-simple based on Extensible Effects and Freer Monads, More Extensible
Effects by Oleg Kiselyov

> polysemy based on Effect Handlers in Scope by Wu, Schrijvers et al

> fused-effects based on Fusion for Free: Efficient Algebraic Effect Handlers by
Wu, Schrijvers et al

> cleff based on ReaderT IO

> effectful based on ReaderT I0

» others?

S



Free monads »

Given a Functor f, Free f is a Free monad.

data Free f a = Pure a
| Free (f (Free f a))

A Monad is something that “computes” when monadic context is collapsed by join ::
m (m a) -> m a (recalling that >>= can be defined as x >>= y = join (fmap y
x)). This is how Monads carry context through a sequential chain of computations:
because at each point in the series, the context from the previous call is collapsed with
the next.

A free monad satisfies all the Monad laws, but doesn't do any collapsing (that’s the
computation). It just builds up a nested series of contexts. The user who creates such a
free monadic value is responsible for doing something with those nested contexts, so
that the meaning of such a composition can be deferred until after the monadic value
has been created.?

2 John Wiegley on Stack Overflow.


https://stackoverflow.com/a/13388966

Huh, what did that mean

» Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)

S



Huh, what did that mean DS

» Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

» fmap is performing substitution and join is dealing with any re-normalization.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Huh, what did that mean DS

» Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

» fmap is performing substitution and join is dealing with any re-normalization.
» Done this way, (m >>= £) on the Maybe monad would first fmap to obtain Just
(Just a), Just Nothing or Nothing before flattening.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Huh, what did that mean »

» Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

» fmap is performing substitution and join is dealing with any re-normalization.

» Done this way, (m >>= £) on the Maybe monad would first fmap to obtain Just
(Just a), Just Nothing or Nothing before flattening.

» In the Maybe a case, the association of binds is largely immaterial, the
normalization pass fixes things up to basically the same size.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Huh, what did that mean DS

» Define a monad in terms of return, fmap and join, rather than return and
(>>=).

m >>= f = join (fmap f m)

» fmap is performing substitution and join is dealing with any re-normalization.

» Done this way, (m >>= £) on the Maybe monad would first fmap to obtain Just
(Just a), Just Nothing or Nothing before flattening.

» In the Maybe a case, the association of binds is largely immaterial, the
normalization pass fixes things up to basically the same size.

» In Free monad, the monad is purely defined in terms of substitution.

join :: Functor f => Free f (Free f a) -> Free f a
join (Pure a) = a
join (Free as) = Free (fmap join as)



Free monads performance PSS

» Vanilla free monads don’t have great performance.

newtype FT f m a =
FT { runFT :: forall r. (a -=>mr) -> (forall x. (x >mr) > f x ->mr)



https://www.youtube.com/watch?v=EiIZlX_k89Y
https://ekmett.github.io/reader/2011/free-monads-for-less-2/index.html

Free monads performance DS

» Vanilla free monads don’t have great performance.
» Solutions like Codensity monad transformer and Church encoded free monad
(ot 34
exist.

newtype FT f m a =
FT { runFT :: forall r. (a ->mr) -> (forall x. (x ->mr) >fx ->mr)

3 Asymptotic Improvement of Computations over Free Monads - Janis Voigtlander
*The Free and The Furious: And by ‘Furious’ | mean Codensity. - raichoo


https://www.youtube.com/watch?v=EiIZlX_k89Y
https://ekmett.github.io/reader/2011/free-monads-for-less-2/index.html

Free monads performance DS

» Vanilla free monads don’t have great performance.
» Solutions like Codensity monad transformer and Church encoded free monad
(ot 34
exist.

newtype FT f m a =
FT { runFT :: forall r. (a ->mr) -> (forall x. (x ->mr) >fx ->mr)

» Think of Codensity as a type level construction which ensures that you end up
with a right associated bind.>

3 Asymptotic Improvement of Computations over Free Monads - Janis Voigtlander
*The Free and The Furious: And by ‘Furious’ | mean Codensity. - raichoo
®Free Monads for less - Edward Kmett


https://www.youtube.com/watch?v=EiIZlX_k89Y
https://ekmett.github.io/reader/2011/free-monads-for-less-2/index.html

Reflection without remorse

> A left associated expression is asymptotically slower than the equivalent right
associated expression. O(n?) vs O(n) respectively.

S



Reflection without remorse

> A left associated expression is asymptotically slower than the equivalent right
associated expression. O(n?) vs O(n) respectively.
» What's meant by reflection? Build and observe.

S



Reflection without remorse DS

> A left associated expression is asymptotically slower than the equivalent right
associated expression. O(n?) vs O(n) respectively.

» What's meant by reflection? Build and observe.

> Efficient data structures give asymptotic improvement for problematic occurrences
of build and observe pattern like monads and monadic reflection.



Extensible effects

» Defines only one effect Eff

S



Extensible effects

» Defines only one effect Eff
> Type level list of effects

S



Extensible effects

» Defines only one effect Eff
> Type level list of effects
» What does it mean to be extensible?

S



Freer monads DS

» Improves on extensible effects

data FFree f a where
Pure :: a =+ FFree f a
Impure :: f x + (x + FFree f a) - FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads DS

» Improves on extensible effects
> How?

data FFree f a where
Pure :: a =+ FFree f a
Impure :: f x =+ (x + FFree f a) - FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads DS

» Improves on extensible effects
> How?
» Relaxes the Functor constraint, becoming Freer!

data FFree f a where
Pure :: a =+ FFree f a
Impure :: f x =+ (x + FFree f a) - FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads DS

» Improves on extensible effects

> How?
» Relaxes the Functor constraint, becoming Freer!
» No need for Functor and Typeable on Union

data FFree f a where
Pure :: a =+ FFree f a
Impure :: f x =+ (x + FFree f a) - FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads ™

» Improves on extensible effects

> How?
» Relaxes the Functor constraint, becoming Freer!
» No need for Functor and Typeable on Union

> freer and freer-simple are based on Freer monads

data FFree f a where
Pure :: a =+ FFree f a
Impure :: f x =+ (x + FFree f a) - FFree f a

instance Monad (FFree f) where
Impure fx k’ >>= k = Impure fx (k’ >>> k)

The construction lets this implementation choose how to perform the fmap operation
fixed to the appropriate output type.



Freer monads »

P> The continuation can now be accessed directly rather than via fmap, which has to
rebuild the mapped data structure.

class Member t r where
inj :: t v => Union r v
prj :: Union r v -> Maybe (t v)

and

data FEFree r a where
Pure :: a -+ FEFree r a
Impure :: Union r x + (x + FEFree r a) - FEFree r a



Freer monads »

P> The continuation can now be accessed directly rather than via fmap, which has to
rebuild the mapped data structure.
» The explicit continuation of FFree also makes it easier to change its representation.

class Member t r where
inj :: t v => Union r v
prj :: Union r v -> Maybe (t v)

and

data FEFree r a where
Pure :: a -+ FEFree r a
Impure :: Union r x =+ (x + FEFree r a) - FEFree r a



Freer monads »

» FEFree r becomes Eff r, where r is the list of effect labels.

type Arr r ab=a > Eff r b

data FTCQueue m a b where
Leaf :: (a -=> m b) -> FTCQueue m a b
Node :: FTCQueue m a x —-> FTCQueue m x b -> FTCQueue m a b

type Arrs r a b = FTCQueue (Eff r) a b
data Eff r a where

Pure :: a =+ Eff r a
Impure :: Union r x + Arrs r x a =+ Eff r a



Freer monads »

» FEFree r becomes Eff r, where r is the list of effect labels.
» The request continuation which receives the reply x and works towards the final
answer a, then has the type x =+ Eff r a.

type Arr r ab=a > Eff r b
data FTCQueue m a b where

Leaf :: (a -=> m b) -> FTCQueue m a b
Node :: FTCQueue m a x —-> FTCQueue m x b -> FTCQueue m a b

type Arrs r a b = FTCQueue (Eff r) a b
data Eff r a where

Pure :: a » Eff r a
Impure :: Union r x + Arrs r x a =+ Eff r a



Resources

» Why Free monads matter

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

» Why Free monads matter
» Free monad considered harmful

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

» Why Free monads matter
» Free monad considered harmful
» Building real-world Haskell applications using Tagless-Final and ReaderT

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

» Why Free monads matter

» Free monad considered harmful

» Building real-world Haskell applications using Tagless-Final and ReaderT
» Free monads from scratch

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

» Why Free monads matter

» Free monad considered harmful

» Building real-world Haskell applications using Tagless-Final and ReaderT
» Free monads from scratch

» An earlier talk of my own on Free Monads

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

VVvVVyVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

When to use CPS vs codensity vs reflection without remorse

VVvyVYyVYVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

When to use CPS vs codensity vs reflection without remorse

ReaderT pattern is just extensible effects

VVVVYVYYVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

When to use CPS vs codensity vs reflection without remorse

ReaderT pattern is just extensible effects

My Effects Bibliography

VVyVVVYVYYVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

When to use CPS vs codensity vs reflection without remorse

ReaderT pattern is just extensible effects

My Effects Bibliography

Effects Bibliography

VVVVVYVYVYYVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

When to use CPS vs codensity vs reflection without remorse
ReaderT pattern is just extensible effects

My Effects Bibliography

Effects Bibliography

Freer simple effects examples

VVYVVVVVYVYYVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

When to use CPS vs codensity vs reflection without remorse
ReaderT pattern is just extensible effects

My Effects Bibliography

Effects Bibliography

Freer simple effects examples

Continuation Passing Style

VVVVVVVVYVYYVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Resources

Why Free monads matter

Free monad considered harmful

Building real-world Haskell applications using Tagless-Final and ReaderT
Free monads from scratch

An earlier talk of my own on Free Monads

Free Monads for less

When to use CPS vs codensity vs reflection without remorse
ReaderT pattern is just extensible effects

My Effects Bibliography

Effects Bibliography

Freer simple effects examples

Continuation Passing Style

Existential Quantification

VVYVVVVVVVYVYYVYYVYY

S


https://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
https://markkarpov.com/post/free-monad-considered-harmful.html
https://fpunfold.com/2023/01/30/final-tagless-readert.html
https://siraben.dev/2020/02/20/free-monads.html
https://www.youtube.com/watch?v=fhu1UQel5eo
https://ekmett.github.io/reader/2011/free-monads-for-less/index.html
https://stackoverflow.com/questions/45334985/when-to-use-cps-vs-codensity-vs-reflection-without-remorse-in-haskell
https://xn--i2r.xn--rhqv96g/2022/02/03/readert-is-extensible-effects/
https://www.dantb.dev/posts/effects-bibliography/
https://github.com/yallop/effects-bibliography
https://git.sanchayanmaity.net/sanchayanmaity/learn-effects
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://markkarpov.com/post/existential-quantification.html

Questions?

» Reach out on

S



Questions?

» Reach out on
» Email: sanchayan®©@sanchayanmaity.net

S



Questions?

» Reach out on
» Email: sanchayan®sanchayanmaity.net
» Mastodon: https://sanchayanmaity.com/@sanchayan

S



Questions?

» Reach out on
» Email: sanchayan®©@sanchayanmaity.net
» Mastodon: https://sanchayanmaity.com/@sanchayan
> Blog: https://sanchayanmaity.net

S



Questions?

» Reac
>

>
| 4
>

h out on

Email: sanchayan@sanchayanmaity.net

Mastodon: https://sanchayanmaity.com/@sanchayan
Blog: https://sanchayanmaity.net

Telegram:

S



Questions?

» Reac
>

>
| 4
>

h out on
Email: sanchayan@sanchayanmaity.net
Mastodon: https://sanchayanmaity.com/@sanchayan
Blog: https://sanchayanmaity.net
Telegram:
> t.me/fpncr

S



Questions?

» Reac
>

>
| 4
>

h out on
Email: sanchayan@sanchayanmaity.net
Mastodon: https://sanchayanmaity.com/@sanchayan
Blog: https://sanchayanmaity.net
Telegram:
> t.me/fpncr
> t.me/SanchayanMaity

S



