
Monads in Haskell

Sanchayan Maity

Monads in Haskell

Sanchayan Maity

Agenda

• Recap of Functors
• Recap of Applicative
• Monads

Functor

class Functor f where
 fmap :: (a -> b) -> f a -> f b
 (<$) :: a -> f b -> f a

• Must preserve identity

fmap id = id

• Must preserve composition of morphism

fmap (f . g) == fmap f . fmap g

Higher order kinds

• For something to be a functor, it has to be a first order kind1.

1Haskell’s Kind System

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Applicative

class Functor f => Applicative (f :: TYPE -> TYPE) where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b

fmap f x = pure f <*> x

Examples

pure (+1) <*> [1..3]
[2, 3, 4]

[(*2), (*3)] <*> [4, 5]
[8,10,12,15]

("Woo", (+1)) <*> (" Hoo!", 0)
("Woo Hoo!", 1)

(Sum 2, (+1)) <*> (Sum 0, 0)
(Sum {getSum = 2}, 1)

(Product 3, (+9)) <*> (Product 2, 8)
(Product {getProduct = 6}, 17)

(,) <$> [1, 2] <*> [3, 4]
[(1,3),(1,4),(2,3),(2,4)]

Use cases

Person
 <$> parseString "name" o
 <*> parseInt "age" o
 <*> parseTelephone "telephone" o

Can also be written as2

liftA3 Person
 (parseString "name" o)
 (parseInt "age" o)
 (parseTelephone "telephone" o)

2FP Complete - Crash course to Applicative syntax

https://www.fpcomplete.com/haskell/tutorial/applicative-syntax/

Use cases

parsePerson :: Parser Person
parsePerson = do
 string "Name: "
 name <- takeWhile (/= 'n')
 endOfLine
 string "Age: "
 age <- decimal
 endOfLine
 pure $ Person name age

Use cases

helper :: () -> Text -> () -> () -> Int -> () -> Person
helper () name () () age () = Person name age

parsePerson :: Parser Person
parsePerson = helper
 <$> string "Name: "
 <*> takeWhile (/= 'n')
 <*> endOfLine
 <*> string "Age: "
 <*> decimal
 <*> endOfLine

Lifting

• Seeing Functor as unary lifting and Applicative as n-ary lifting

liftA0 :: Applicative f => (a) -> (f a)
liftA1 :: Functor f => (a -> b) -> (f a -> f b)
liftA2 :: Applicative f => (a -> b -> c) -> (f a -> f b -> f c)
liftA3 :: Applicative f => (a -> b -> c -> d) -> (f a -> f b -> f c -> f d)
liftA4 :: Applicative f => ..

Where liftA0 = pure and liftA1 = fmap .

Monoidal functors

• Remember Monoid?

class Monoid m where
 mempty :: m
 mappend :: m -> m -> m

($) :: (a -> b) -> a -> b
(<$>) :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

mappend :: f f f
($) :: (a -> b) -> a -> b
<*> :: f (a -> b) -> f a -> f b

instance Monoid a => Applicative ((,) a) where
 pure x = (mempty, x)
 (u, f) <*> (v, x) = (u `mappend` v, f x)

Where are monoids again

fmap (+1) ("blah", 0)
("blah",1)

("Woo", (+1)) <*> (" Hoo!", 0)
("Woo Hoo!", 1)

(,) <$> [1, 2] <*> [3, 4]
[(1,3),(1,4),(2,3),(2,4)]

liftA2 (,) [1, 2] [3, 4]
[(1,3),(1,4),(2,3),(2,4)]

Function apply

• Applying a function to an effectful argument

(<$>) :: Functor m => (a -> b) -> m a -> m b

Applicative laws

-- Identity
pure id <*> v = v

-- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

-- Homomorphism
pure f <*> pure x = pure (f x)

-- Interchange
u <*> pure y = pure ($ y) <*> u

Operators

• pure wraps up a pure value into some kind of Applicative
• liftA2 applies a pure function to the values inside two Applicative wrapped values
• <$> operator version of fmap
• <*> apply a wrapped function to a wrapped value
• *> , <*
• See more at3

3FP Complete - Crash course to Applicative syntax

https://www.fpcomplete.com/haskell/tutorial/applicative-syntax/

Monad, is that you?

• Unreasonable Effectiveness of Metaphor4

4The Unreasonable Effectiveness of Metaphor

https://argumatronic.com/posts/2018-09-02-effective-metaphor.html

Motivation - I

safeInverse :: Float -> Maybe Float
safeInverse 0 = Nothing
safeInverse x = Just (1 / x)

safeSqrt :: Float -> Maybe Float
safeSqrt x = case x <= 0 of
 True -> Nothing
 False -> Just (sqrt x)

sqrtInverse1 :: Float -> Maybe (Maybe Float)
sqrtInverse1 x = safeInverse <$> (safeSqrt x)

Motivation - I

joinMaybe :: Maybe (Maybe a) -> Maybe a
joinMaybe (Just x) = x
joinMaybe Nothing = Nothing

sqrtInverse2 :: Float -> Maybe Float
sqrtInverse2 x = joinMaybe $ safeInverse <$> (safeSqrt x)

-- In general
-- join :: Monad m => m (m a) -> m a

Motivation - II

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
x >>= f = case x of
 (Just x') -> f x'
 Nothing -> Nothing

sqrtInverse :: Float -> Maybe Float
sqrtInverse x = (>>=) (safeSqrt x) safeInverse

-- >>= is also known as `bind`

-- In general
-- (>>=) :: Monad m => m a -> (a -> m b) -> m b

Motivation - III

(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> (a -> Maybe c)
f >=> g = \x -> case f x of
 Just x -> g x
 Nothing -> Nothing

sqrtInverse3 :: Float -> Maybe Float
sqrtInverse3 = safeSqrt >=> safeInverse

-- In general
-- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

Motivations

• Flattening
• Sequencing
• Composition

Monad

class Applicative m => Monad (m :: Type -> Type) where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

import Control.Monad (join)

join :: Monad m => m (m a) -> m a

Just do

main :: IO ()
main = do
 putStrLn "What is your name?"
 name <- getLine
 let greeting = "Hello, " ++ name
 putStrLn greeting

Monad laws

-- Left identity
return x >>= f == f x

-- Right identity
x >>= return == x

-- Associativity
m >>= (\x -> k x >>= h) == (m >>= k) >>= h

???

Monoids recap

class Semigroup m where
 (<>) :: m -> m -> m

class Semigroup m => Monoid m where
 mempty :: m

 -- defining mappend is unnecessary, it copies from Semigroup
 mappend :: m -> m -> m
 mappend = (<>)

Some Math

• Category: a set of objects and arrows
• Arrows between objects (morphisms): functions mapping one object to another
• Two categories: Set and Hask

Categories

• Set
‣ Category of sets
‣ Every arrow, function from one set to another

• Hask
‣ Similar to Set
‣ Objects are Haskell types like Int instead of Z or R
‣ Arrows between objects a & b are functions of type a -> b
‣ a -> b also a Type in Hask
‣ If A -> B and B -> C , then A -> C ~= . in Hask
‣ Fun fact: Function composition forms a monoid! (See Endo).

https://hackage.haskell.org/package/base-4.20.0.1/docs/Data-Monoid.html##t:Endo

Monads are monoids…

In Haskell

• Only work with Hask, so functors all map back to Hask.

• Functor typeclass are a special type of functor called endofunctors

• endofunctors map a category back to itself

• Monad is a monoid where

-- Operation
>==>

-- Identity
return

-- Set
Type
a -> m b

Now?

Contrasts with Monad

• No data dependency between f a and f b
• Result of f a can’t possibly influence the behaviour of f b
• That needs something like a -> f b

Applicative vs Monads

• Applicative
‣ Effects
‣ Batching and aggregation
‣ Concurrency/Independent

- Parsing context free grammar
- Exploring all branches of computation (see Alternative)

• Monads
‣ Effects
‣ Composition
‣ Sequence/Dependent

- Parsing context sensitive grammar
- Branching on previous results

https://hackage.haskell.org/package/base-4.20.0.1/docs/Control-Applicative.html##t:Alternative
https://hackage.haskell.org/package/base-4.20.0.1/docs/Control-Applicative.html##t:Alternative

Weaker but better

• Weaker than monads but thus also more common
• Lends itself to optimisation (See Facebook’s Haxl project)
• Always opt for the least powerful mechanism to get things done
• No dependency issues or branching? just use applicative

https://hackage.haskell.org/package/haxl

State monad

newtype State s a = State { runState :: s -> (a, s) }

instance Functor (State s) where
 fmap :: (a -> b) -> State s a -> State s b
 fmap f (State sa) = State $ \s -> let (a, s) = sa s in (f a, s)

instance Applicative (State s) where
 pure :: a -> State s a
 pure a = State $ \s -> (a, s)

 (<*>) :: State s (a -> b) -> State s a -> State s b
 State f <*> State g = State $ \s -> let (aTob, s') = f s in
 let (a, s'') = g s' in
 (aTob a, s'')

State monad

instance Monad (State s) where
 return = pure
 (>>=) :: State s a
 -> (a -> State s b)
 -> State s b
 (State f) >>= g = State $ \s -> let (a, s') = f s
 ms = runState $ g a
 in ms s'
 (>>) :: State s a
 -> State s b
 -> State s b
 State f >> State g = State $ \s -> let (_, s') = f s
 in g s'

get :: State s s
get = State $ \s -> (s, s)

State monad

put :: s -> State s ()
put s = State $ _ -> ((), s)

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

eval :: State s a -> s -> a
eval (State sa) x = let (a, _) = sa x
 in a

Context

type Stack = [Int]

empty :: Stack
empty = []

pop :: State Stack Int
pop = State $ \(x:xs) -> (x, xs)

push :: Int -> State Stack ()
push a = State $ \xs -> ((), a:xs)

tos :: State Stack Int
tos = State $ \(x:xs) -> (x, x:xs)

Context

stackManip :: State Stack Int
stackManip = do
 push 10
 push 20
 a <- pop
 b <- pop
 push (a+b)
 tos

testState = eval stackManip empty

Reader monad

class Monad m => MonadReader r m | m -> r where
 ask :: m r
 local :: (r -> r) -> m a -> m a

Context

import Control.Monad.Reader

tom :: Reader String String
tom = do
 env <- ask
 return (env ++ " This is Tom.")

jerry :: Reader String String
jerry = do
 env <- ask
 return (env ++ " This is Jerry.")

Context

tomAndJerry :: Reader String String
tomAndJerry = do
 t <- tom
 j <- jerry
 return (t ++ " " ++ j)

runJerryRun :: String
runJerryRun = runReader tomAndJerry "Who is this?"

Questions

• Reach out on
‣ Email: me@sanchayanmaity.net
‣ Mastodon: sanchayanmaity.com

https://sanchayanmaity.com/@sanchayan

	Agenda
	Functor
	Higher order kinds
	Applicative
	Examples
	Use cases
	Use cases
	Use cases
	Lifting
	Monoidal functors
	Where are monoids again
	Function apply
	Applicative laws
	Operators
	Monad, is that you?
	Motivation - I
	Motivation - I
	Motivation - II
	Motivation - III
	Motivations
	Monad
	Just do
	Monad laws
	???
	Monoids recap
	Some Math
	Categories
	Monads are monoids…
	Now?
	Contrasts with Monad
	Applicative vs Monads
	Weaker but better
	State monad
	State monad
	State monad
	Context
	Context
	Reader monad
	Context
	Context
	Questions

