6b3f4dc157
This commit separates the low-level keyboard driver from TTY, putting it in a separate driver (PCKBD). The commit also separates management of raw input devices from TTY, and puts it in a separate server (INPUT). All keyboard and mouse input from hardware is sent by drivers to the INPUT server, which either sends it to a process that has opened a raw input device, or otherwise forwards it to TTY for standard processing. Design by Dirk Vogt. Prototype by Uli Kastlunger. Additional changes made to the prototype: - the event communication is now based on USB HID codes; all input drivers have to use USB codes to describe events; - all TTY keymaps have been converted to USB format, with the effect that a single keymap covers all keys; there is no (static) escaped keymap anymore; - further keymap tweaks now allow remapping of literally all keys; - input device renumbering and protocol rewrite; - INPUT server rewrite, with added support for cancel and select; - PCKBD reimplementation, including PC/AT-to-USB translation; - support for manipulating keyboard LEDs has been added; - keyboard and mouse multiplexer devices have been added to INPUT, primarily so that an X server need only open two devices; - a new "libinputdriver" library abstracts away protocol details from input drivers, and should be used by all future input drivers; - both INPUT and PCKBD can be restarted; - TTY is now scheduled by KERNEL, so that it won't be punished for running a lot; without this, simply running "yes" on the console kills the system; - the KIOCBELL IOCTL has been moved to /dev/console; - support for the SCANCODES termios setting has been removed; - obsolete keymap compression has been removed; - the obsolete Olivetti M24 keymap has been removed. Change-Id: I3a672fb8c4fd566734e4b46d3994b4b7fc96d578
1422 lines
37 KiB
C
1422 lines
37 KiB
C
|
|
#define _SYSTEM 1
|
|
|
|
#include <minix/callnr.h>
|
|
#include <minix/com.h>
|
|
#include <minix/config.h>
|
|
#include <minix/const.h>
|
|
#include <minix/ds.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/minlib.h>
|
|
#include <minix/type.h>
|
|
#include <minix/ipc.h>
|
|
#include <minix/sysutil.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/safecopies.h>
|
|
#include <minix/cpufeature.h>
|
|
#include <minix/bitmap.h>
|
|
#include <minix/debug.h>
|
|
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <env.h>
|
|
#include <stdio.h>
|
|
#include <fcntl.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "proto.h"
|
|
#include "glo.h"
|
|
#include "util.h"
|
|
#include "vm.h"
|
|
#include "sanitycheck.h"
|
|
|
|
static int vm_self_pages;
|
|
|
|
/* PDE used to map in kernel, kernel physical address. */
|
|
#define MAX_PAGEDIR_PDES 5
|
|
static struct pdm {
|
|
int pdeno;
|
|
u32_t val;
|
|
phys_bytes phys;
|
|
u32_t *page_directories;
|
|
} pagedir_mappings[MAX_PAGEDIR_PDES];
|
|
|
|
static multiboot_module_t *kern_mb_mod = NULL;
|
|
static size_t kern_size = 0;
|
|
static int kern_start_pde = -1;
|
|
|
|
/* big page size available in hardware? */
|
|
static int bigpage_ok = 1;
|
|
|
|
/* Our process table entry. */
|
|
struct vmproc *vmprocess = &vmproc[VM_PROC_NR];
|
|
|
|
/* Spare memory, ready to go after initialization, to avoid a
|
|
* circular dependency on allocating memory and writing it into VM's
|
|
* page table.
|
|
*/
|
|
#if SANITYCHECKS
|
|
#define SPAREPAGES 200
|
|
#define STATIC_SPAREPAGES 190
|
|
#else
|
|
#ifdef __arm__
|
|
# define SPAREPAGES 150
|
|
# define STATIC_SPAREPAGES 140
|
|
#else
|
|
static u32_t global_bit = 0;
|
|
# define SPAREPAGES 20
|
|
# define STATIC_SPAREPAGES 15
|
|
#endif /* __arm__ */
|
|
#endif
|
|
|
|
#define SPAREPAGEDIRS 1
|
|
#define STATIC_SPAREPAGEDIRS 1
|
|
|
|
int missing_sparedirs = SPAREPAGEDIRS;
|
|
static struct {
|
|
void *pagedir;
|
|
phys_bytes phys;
|
|
} sparepagedirs[SPAREPAGEDIRS];
|
|
|
|
extern char _end;
|
|
#define is_staticaddr(v) ((vir_bytes) (v) < (vir_bytes) &_end)
|
|
|
|
#define MAX_KERNMAPPINGS 10
|
|
static struct {
|
|
phys_bytes phys_addr; /* Physical addr. */
|
|
phys_bytes len; /* Length in bytes. */
|
|
vir_bytes vir_addr; /* Offset in page table. */
|
|
int flags;
|
|
} kern_mappings[MAX_KERNMAPPINGS];
|
|
int kernmappings = 0;
|
|
|
|
/* Clicks must be pages, as
|
|
* - they must be page aligned to map them
|
|
* - they must be a multiple of the page size
|
|
* - it's inconvenient to have them bigger than pages, because we often want
|
|
* just one page
|
|
* May as well require them to be equal then.
|
|
*/
|
|
#if CLICK_SIZE != VM_PAGE_SIZE
|
|
#error CLICK_SIZE must be page size.
|
|
#endif
|
|
|
|
static void *spare_pagequeue;
|
|
static char static_sparepages[VM_PAGE_SIZE*STATIC_SPAREPAGES]
|
|
__aligned(VM_PAGE_SIZE);
|
|
|
|
#if defined(__arm__)
|
|
static char static_sparepagedirs[ARCH_PAGEDIR_SIZE*STATIC_SPAREPAGEDIRS + ARCH_PAGEDIR_SIZE] __aligned(ARCH_PAGEDIR_SIZE);
|
|
#endif
|
|
|
|
#if SANITYCHECKS
|
|
/*===========================================================================*
|
|
* pt_sanitycheck *
|
|
*===========================================================================*/
|
|
void pt_sanitycheck(pt_t *pt, char *file, int line)
|
|
{
|
|
/* Basic pt sanity check. */
|
|
int slot;
|
|
|
|
MYASSERT(pt);
|
|
MYASSERT(pt->pt_dir);
|
|
MYASSERT(pt->pt_dir_phys);
|
|
|
|
for(slot = 0; slot < ELEMENTS(vmproc); slot++) {
|
|
if(pt == &vmproc[slot].vm_pt)
|
|
break;
|
|
}
|
|
|
|
if(slot >= ELEMENTS(vmproc)) {
|
|
panic("pt_sanitycheck: passed pt not in any proc");
|
|
}
|
|
|
|
MYASSERT(usedpages_add(pt->pt_dir_phys, VM_PAGE_SIZE) == OK);
|
|
}
|
|
#endif
|
|
|
|
/*===========================================================================*
|
|
* findhole *
|
|
*===========================================================================*/
|
|
static u32_t findhole(int pages)
|
|
{
|
|
/* Find a space in the virtual address space of VM. */
|
|
u32_t curv;
|
|
int pde = 0, try_restart;
|
|
static u32_t lastv = 0;
|
|
pt_t *pt = &vmprocess->vm_pt;
|
|
vir_bytes vmin, vmax;
|
|
u32_t holev = NO_MEM;
|
|
int holesize = -1;
|
|
|
|
vmin = (vir_bytes) (&_end); /* marks end of VM BSS */
|
|
vmin += 1024*1024*1024; /* reserve 1GB virtual address space for VM heap */
|
|
vmin &= ARCH_VM_ADDR_MASK;
|
|
vmax = vmin + 100 * 1024 * 1024; /* allow 100MB of address space for VM */
|
|
|
|
/* Input sanity check. */
|
|
assert(vmin + VM_PAGE_SIZE >= vmin);
|
|
assert(vmax >= vmin + VM_PAGE_SIZE);
|
|
assert((vmin % VM_PAGE_SIZE) == 0);
|
|
assert((vmax % VM_PAGE_SIZE) == 0);
|
|
assert(pages > 0);
|
|
|
|
curv = lastv;
|
|
if(curv < vmin || curv >= vmax)
|
|
curv = vmin;
|
|
|
|
try_restart = 1;
|
|
|
|
/* Start looking for a free page starting at vmin. */
|
|
while(curv < vmax) {
|
|
int pte;
|
|
|
|
assert(curv >= vmin);
|
|
assert(curv < vmax);
|
|
|
|
pde = ARCH_VM_PDE(curv);
|
|
pte = ARCH_VM_PTE(curv);
|
|
|
|
if((pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT) &&
|
|
(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) {
|
|
/* there is a page here - so keep looking for holes */
|
|
holev = NO_MEM;
|
|
holesize = 0;
|
|
} else {
|
|
/* there is no page here - so we have a hole, a bigger
|
|
* one if we already had one
|
|
*/
|
|
if(holev == NO_MEM) {
|
|
holev = curv;
|
|
holesize = 1;
|
|
} else holesize++;
|
|
|
|
assert(holesize > 0);
|
|
assert(holesize <= pages);
|
|
|
|
/* if it's big enough, return it */
|
|
if(holesize == pages) {
|
|
lastv = curv + VM_PAGE_SIZE;
|
|
return holev;
|
|
}
|
|
}
|
|
|
|
curv+=VM_PAGE_SIZE;
|
|
|
|
/* if we reached the limit, start scanning from the beginning if
|
|
* we haven't looked there yet
|
|
*/
|
|
if(curv >= vmax && try_restart) {
|
|
try_restart = 0;
|
|
curv = vmin;
|
|
}
|
|
}
|
|
|
|
printf("VM: out of virtual address space in vm\n");
|
|
|
|
return NO_MEM;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_freepages *
|
|
*===========================================================================*/
|
|
void vm_freepages(vir_bytes vir, int pages)
|
|
{
|
|
assert(!(vir % VM_PAGE_SIZE));
|
|
|
|
if(is_staticaddr(vir)) {
|
|
printf("VM: not freeing static page\n");
|
|
return;
|
|
}
|
|
|
|
if(pt_writemap(vmprocess, &vmprocess->vm_pt, vir,
|
|
MAP_NONE, pages*VM_PAGE_SIZE, 0,
|
|
WMF_OVERWRITE | WMF_FREE) != OK)
|
|
panic("vm_freepages: pt_writemap failed");
|
|
|
|
vm_self_pages--;
|
|
|
|
#if SANITYCHECKS
|
|
/* If SANITYCHECKS are on, flush tlb so accessing freed pages is
|
|
* always trapped, also if not in tlb.
|
|
*/
|
|
if((sys_vmctl(SELF, VMCTL_FLUSHTLB, 0)) != OK) {
|
|
panic("VMCTL_FLUSHTLB failed");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_getsparepage *
|
|
*===========================================================================*/
|
|
static void *vm_getsparepage(phys_bytes *phys)
|
|
{
|
|
void *ptr;
|
|
if(reservedqueue_alloc(spare_pagequeue, phys, &ptr) != OK) {
|
|
printf("vm_getsparepage: no spare found\n");
|
|
return NULL;
|
|
}
|
|
assert(ptr);
|
|
return ptr;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_getsparepagedir *
|
|
*===========================================================================*/
|
|
static void *vm_getsparepagedir(phys_bytes *phys)
|
|
{
|
|
int s;
|
|
assert(missing_sparedirs >= 0 && missing_sparedirs <= SPAREPAGEDIRS);
|
|
for(s = 0; s < SPAREPAGEDIRS; s++) {
|
|
if(sparepagedirs[s].pagedir) {
|
|
void *sp;
|
|
sp = sparepagedirs[s].pagedir;
|
|
*phys = sparepagedirs[s].phys;
|
|
sparepagedirs[s].pagedir = NULL;
|
|
missing_sparedirs++;
|
|
assert(missing_sparedirs >= 0 && missing_sparedirs <= SPAREPAGEDIRS);
|
|
return sp;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void *vm_mappages(phys_bytes p, int pages)
|
|
{
|
|
vir_bytes loc;
|
|
int r;
|
|
pt_t *pt = &vmprocess->vm_pt;
|
|
|
|
/* Where in our virtual address space can we put it? */
|
|
loc = findhole(pages);
|
|
if(loc == NO_MEM) {
|
|
printf("vm_mappages: findhole failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Map this page into our address space. */
|
|
if((r=pt_writemap(vmprocess, pt, loc, p, VM_PAGE_SIZE*pages,
|
|
ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW
|
|
#if defined(__arm__)
|
|
| ARM_VM_PTE_CACHED
|
|
#endif
|
|
, 0)) != OK) {
|
|
printf("vm_mappages writemap failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
if((r=sys_vmctl(SELF, VMCTL_FLUSHTLB, 0)) != OK) {
|
|
panic("VMCTL_FLUSHTLB failed: %d", r);
|
|
}
|
|
|
|
assert(loc);
|
|
|
|
return (void *) loc;
|
|
}
|
|
|
|
static int pt_init_done;
|
|
|
|
/*===========================================================================*
|
|
* vm_allocpage *
|
|
*===========================================================================*/
|
|
void *vm_allocpages(phys_bytes *phys, int reason, int pages)
|
|
{
|
|
/* Allocate a page for use by VM itself. */
|
|
phys_bytes newpage;
|
|
static int level = 0;
|
|
void *ret;
|
|
u32_t mem_flags = 0;
|
|
|
|
assert(reason >= 0 && reason < VMP_CATEGORIES);
|
|
|
|
assert(pages > 0);
|
|
|
|
level++;
|
|
|
|
assert(level >= 1);
|
|
assert(level <= 2);
|
|
|
|
if((level > 1) || !pt_init_done) {
|
|
void *s;
|
|
|
|
if(pages == 1) s=vm_getsparepage(phys);
|
|
else if(pages == 4) s=vm_getsparepagedir(phys);
|
|
else panic("%d pages", pages);
|
|
|
|
level--;
|
|
if(!s) {
|
|
util_stacktrace();
|
|
printf("VM: warning: out of spare pages\n");
|
|
}
|
|
if(!is_staticaddr(s)) vm_self_pages++;
|
|
return s;
|
|
}
|
|
|
|
#if defined(__arm__)
|
|
if (reason == VMP_PAGEDIR) {
|
|
mem_flags |= PAF_ALIGN16K;
|
|
}
|
|
#endif
|
|
|
|
/* Allocate page of memory for use by VM. As VM
|
|
* is trusted, we don't have to pre-clear it.
|
|
*/
|
|
if((newpage = alloc_mem(pages, mem_flags)) == NO_MEM) {
|
|
level--;
|
|
printf("VM: vm_allocpage: alloc_mem failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
*phys = CLICK2ABS(newpage);
|
|
|
|
if(!(ret = vm_mappages(*phys, pages))) {
|
|
level--;
|
|
printf("VM: vm_allocpage: vm_mappages failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
level--;
|
|
vm_self_pages++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *vm_allocpage(phys_bytes *phys, int reason)
|
|
{
|
|
return vm_allocpages(phys, reason, 1);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_pagelock *
|
|
*===========================================================================*/
|
|
void vm_pagelock(void *vir, int lockflag)
|
|
{
|
|
/* Mark a page allocated by vm_allocpage() unwritable, i.e. only for VM. */
|
|
vir_bytes m = (vir_bytes) vir;
|
|
int r;
|
|
u32_t flags = ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER;
|
|
pt_t *pt;
|
|
|
|
pt = &vmprocess->vm_pt;
|
|
|
|
assert(!(m % VM_PAGE_SIZE));
|
|
|
|
if(!lockflag)
|
|
flags |= ARCH_VM_PTE_RW;
|
|
#if defined(__arm__)
|
|
else
|
|
flags |= ARCH_VM_PTE_RO;
|
|
|
|
flags |= ARM_VM_PTE_CACHED ;
|
|
#endif
|
|
|
|
/* Update flags. */
|
|
if((r=pt_writemap(vmprocess, pt, m, 0, VM_PAGE_SIZE,
|
|
flags, WMF_OVERWRITE | WMF_WRITEFLAGSONLY)) != OK) {
|
|
panic("vm_lockpage: pt_writemap failed");
|
|
}
|
|
|
|
if((r=sys_vmctl(SELF, VMCTL_FLUSHTLB, 0)) != OK) {
|
|
panic("VMCTL_FLUSHTLB failed: %d", r);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_addrok *
|
|
*===========================================================================*/
|
|
int vm_addrok(void *vir, int writeflag)
|
|
{
|
|
pt_t *pt = &vmprocess->vm_pt;
|
|
int pde, pte;
|
|
vir_bytes v = (vir_bytes) vir;
|
|
|
|
pde = ARCH_VM_PDE(v);
|
|
pte = ARCH_VM_PTE(v);
|
|
|
|
if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) {
|
|
printf("addr not ok: missing pde %d\n", pde);
|
|
return 0;
|
|
}
|
|
|
|
#if defined(__i386__)
|
|
if(writeflag &&
|
|
!(pt->pt_dir[pde] & ARCH_VM_PTE_RW)) {
|
|
printf("addr not ok: pde %d present but pde unwritable\n", pde);
|
|
return 0;
|
|
}
|
|
#elif defined(__arm__)
|
|
if(writeflag &&
|
|
(pt->pt_dir[pde] & ARCH_VM_PTE_RO)) {
|
|
printf("addr not ok: pde %d present but pde unwritable\n", pde);
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
if(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) {
|
|
printf("addr not ok: missing pde %d / pte %d\n",
|
|
pde, pte);
|
|
return 0;
|
|
}
|
|
|
|
#if defined(__i386__)
|
|
if(writeflag &&
|
|
!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_RW)) {
|
|
printf("addr not ok: pde %d / pte %d present but unwritable\n",
|
|
pde, pte);
|
|
#elif defined(__arm__)
|
|
if(writeflag &&
|
|
(pt->pt_pt[pde][pte] & ARCH_VM_PTE_RO)) {
|
|
printf("addr not ok: pde %d / pte %d present but unwritable\n",
|
|
pde, pte);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_ptalloc *
|
|
*===========================================================================*/
|
|
static int pt_ptalloc(pt_t *pt, int pde, u32_t flags)
|
|
{
|
|
/* Allocate a page table and write its address into the page directory. */
|
|
int i;
|
|
phys_bytes pt_phys;
|
|
|
|
/* Argument must make sense. */
|
|
assert(pde >= 0 && pde < ARCH_VM_DIR_ENTRIES);
|
|
assert(!(flags & ~(PTF_ALLFLAGS)));
|
|
|
|
/* We don't expect to overwrite page directory entry, nor
|
|
* storage for the page table.
|
|
*/
|
|
assert(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT));
|
|
assert(!pt->pt_pt[pde]);
|
|
|
|
/* Get storage for the page table. */
|
|
if(!(pt->pt_pt[pde] = vm_allocpage(&pt_phys, VMP_PAGETABLE)))
|
|
return ENOMEM;
|
|
|
|
for(i = 0; i < ARCH_VM_PT_ENTRIES; i++)
|
|
pt->pt_pt[pde][i] = 0; /* Empty entry. */
|
|
|
|
/* Make page directory entry.
|
|
* The PDE is always 'present,' 'writable,' and 'user accessible,'
|
|
* relying on the PTE for protection.
|
|
*/
|
|
#if defined(__i386__)
|
|
pt->pt_dir[pde] = (pt_phys & ARCH_VM_ADDR_MASK) | flags
|
|
| ARCH_VM_PDE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW;
|
|
#elif defined(__arm__)
|
|
pt->pt_dir[pde] = (pt_phys & ARCH_VM_PDE_MASK)
|
|
| ARCH_VM_PDE_PRESENT | ARM_VM_PDE_DOMAIN; //LSC FIXME
|
|
#endif
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_ptalloc_in_range *
|
|
*===========================================================================*/
|
|
int pt_ptalloc_in_range(pt_t *pt, vir_bytes start, vir_bytes end,
|
|
u32_t flags, int verify)
|
|
{
|
|
/* Allocate all the page tables in the range specified. */
|
|
int pde, first_pde, last_pde;
|
|
|
|
first_pde = ARCH_VM_PDE(start);
|
|
last_pde = ARCH_VM_PDE(end-1);
|
|
|
|
assert(first_pde >= 0);
|
|
assert(last_pde < ARCH_VM_DIR_ENTRIES);
|
|
|
|
/* Scan all page-directory entries in the range. */
|
|
for(pde = first_pde; pde <= last_pde; pde++) {
|
|
assert(!(pt->pt_dir[pde] & ARCH_VM_BIGPAGE));
|
|
if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) {
|
|
int r;
|
|
if(verify) {
|
|
printf("pt_ptalloc_in_range: no pde %d\n", pde);
|
|
return EFAULT;
|
|
}
|
|
assert(!pt->pt_dir[pde]);
|
|
if((r=pt_ptalloc(pt, pde, flags)) != OK) {
|
|
/* Couldn't do (complete) mapping.
|
|
* Don't bother freeing any previously
|
|
* allocated page tables, they're
|
|
* still writable, don't point to nonsense,
|
|
* and pt_ptalloc leaves the directory
|
|
* and other data in a consistent state.
|
|
*/
|
|
return r;
|
|
}
|
|
assert(pt->pt_pt[pde]);
|
|
}
|
|
assert(pt->pt_pt[pde]);
|
|
assert(pt->pt_dir[pde]);
|
|
assert(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
static const char *ptestr(u32_t pte)
|
|
{
|
|
#define FLAG(constant, name) { \
|
|
if(pte & (constant)) { strcat(str, name); strcat(str, " "); } \
|
|
}
|
|
|
|
static char str[30];
|
|
if(!(pte & ARCH_VM_PTE_PRESENT)) {
|
|
return "not present";
|
|
}
|
|
str[0] = '\0';
|
|
#if defined(__i386__)
|
|
FLAG(ARCH_VM_PTE_RW, "W");
|
|
#elif defined(__arm__)
|
|
if(pte & ARCH_VM_PTE_RO) {
|
|
strcat(str, "R ");
|
|
} else {
|
|
strcat(str, "W ");
|
|
}
|
|
#endif
|
|
FLAG(ARCH_VM_PTE_USER, "U");
|
|
#if defined(__i386__)
|
|
FLAG(I386_VM_PWT, "PWT");
|
|
FLAG(I386_VM_PCD, "PCD");
|
|
FLAG(I386_VM_ACC, "ACC");
|
|
FLAG(I386_VM_DIRTY, "DIRTY");
|
|
FLAG(I386_VM_PS, "PS");
|
|
FLAG(I386_VM_GLOBAL, "G");
|
|
FLAG(I386_VM_PTAVAIL1, "AV1");
|
|
FLAG(I386_VM_PTAVAIL2, "AV2");
|
|
FLAG(I386_VM_PTAVAIL3, "AV3");
|
|
#elif defined(__arm__)
|
|
FLAG(ARM_VM_PTE_SUPER, "S");
|
|
FLAG(ARM_VM_PTE_S, "SH");
|
|
FLAG(ARM_VM_PTE_WB, "WB");
|
|
FLAG(ARM_VM_PTE_WT, "WT");
|
|
#endif
|
|
|
|
return str;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_map_in_range *
|
|
*===========================================================================*/
|
|
int pt_map_in_range(struct vmproc *src_vmp, struct vmproc *dst_vmp,
|
|
vir_bytes start, vir_bytes end)
|
|
{
|
|
/* Transfer all the mappings from the pt of the source process to the pt of
|
|
* the destination process in the range specified.
|
|
*/
|
|
int pde, pte;
|
|
vir_bytes viraddr;
|
|
pt_t *pt, *dst_pt;
|
|
|
|
pt = &src_vmp->vm_pt;
|
|
dst_pt = &dst_vmp->vm_pt;
|
|
|
|
end = end ? end : VM_DATATOP;
|
|
assert(start % VM_PAGE_SIZE == 0);
|
|
assert(end % VM_PAGE_SIZE == 0);
|
|
|
|
assert( /* ARCH_VM_PDE(start) >= 0 && */ start <= end);
|
|
assert(ARCH_VM_PDE(end) < ARCH_VM_DIR_ENTRIES);
|
|
|
|
#if LU_DEBUG
|
|
printf("VM: pt_map_in_range: src = %d, dst = %d\n",
|
|
src_vmp->vm_endpoint, dst_vmp->vm_endpoint);
|
|
printf("VM: pt_map_in_range: transferring from 0x%08x (pde %d pte %d) to 0x%08x (pde %d pte %d)\n",
|
|
start, ARCH_VM_PDE(start), ARCH_VM_PTE(start),
|
|
end, ARCH_VM_PDE(end), ARCH_VM_PTE(end));
|
|
#endif
|
|
|
|
/* Scan all page-table entries in the range. */
|
|
for(viraddr = start; viraddr <= end; viraddr += VM_PAGE_SIZE) {
|
|
pde = ARCH_VM_PDE(viraddr);
|
|
if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) {
|
|
if(viraddr == VM_DATATOP) break;
|
|
continue;
|
|
}
|
|
pte = ARCH_VM_PTE(viraddr);
|
|
if(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) {
|
|
if(viraddr == VM_DATATOP) break;
|
|
continue;
|
|
}
|
|
|
|
/* Transfer the mapping. */
|
|
dst_pt->pt_pt[pde][pte] = pt->pt_pt[pde][pte];
|
|
|
|
if(viraddr == VM_DATATOP) break;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_ptmap *
|
|
*===========================================================================*/
|
|
int pt_ptmap(struct vmproc *src_vmp, struct vmproc *dst_vmp)
|
|
{
|
|
/* Transfer mappings to page dir and page tables from source process and
|
|
* destination process. Make sure all the mappings are above the stack, not
|
|
* to corrupt valid mappings in the data segment of the destination process.
|
|
*/
|
|
int pde, r;
|
|
phys_bytes physaddr;
|
|
vir_bytes viraddr;
|
|
pt_t *pt;
|
|
|
|
pt = &src_vmp->vm_pt;
|
|
|
|
#if LU_DEBUG
|
|
printf("VM: pt_ptmap: src = %d, dst = %d\n",
|
|
src_vmp->vm_endpoint, dst_vmp->vm_endpoint);
|
|
#endif
|
|
|
|
/* Transfer mapping to the page directory. */
|
|
viraddr = (vir_bytes) pt->pt_dir;
|
|
physaddr = pt->pt_dir_phys & ARCH_VM_ADDR_MASK;
|
|
#if defined(__i386__)
|
|
if((r=pt_writemap(dst_vmp, &dst_vmp->vm_pt, viraddr, physaddr, VM_PAGE_SIZE,
|
|
ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW,
|
|
#elif defined(__arm__)
|
|
if((r=pt_writemap(dst_vmp, &dst_vmp->vm_pt, viraddr, physaddr, ARCH_PAGEDIR_SIZE,
|
|
ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER |
|
|
ARM_VM_PTE_CACHED ,
|
|
#endif
|
|
WMF_OVERWRITE)) != OK) {
|
|
return r;
|
|
}
|
|
#if LU_DEBUG
|
|
printf("VM: pt_ptmap: transferred mapping to page dir: 0x%08x (0x%08x)\n",
|
|
viraddr, physaddr);
|
|
#endif
|
|
|
|
/* Scan all non-reserved page-directory entries. */
|
|
for(pde=0; pde < ARCH_VM_DIR_ENTRIES; pde++) {
|
|
if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) {
|
|
continue;
|
|
}
|
|
|
|
/* Transfer mapping to the page table. */
|
|
viraddr = (vir_bytes) pt->pt_pt[pde];
|
|
#if defined(__i386__)
|
|
physaddr = pt->pt_dir[pde] & ARCH_VM_ADDR_MASK;
|
|
#elif defined(__arm__)
|
|
physaddr = pt->pt_dir[pde] & ARCH_VM_PDE_MASK;
|
|
#endif
|
|
if((r=pt_writemap(dst_vmp, &dst_vmp->vm_pt, viraddr, physaddr, VM_PAGE_SIZE,
|
|
ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW
|
|
#ifdef __arm__
|
|
| ARM_VM_PTE_CACHED
|
|
#endif
|
|
,
|
|
WMF_OVERWRITE)) != OK) {
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
void pt_clearmapcache(void)
|
|
{
|
|
/* Make sure kernel will invalidate tlb when using current
|
|
* pagetable (i.e. vm's) to make new mappings before new cr3
|
|
* is loaded.
|
|
*/
|
|
if(sys_vmctl(SELF, VMCTL_CLEARMAPCACHE, 0) != OK)
|
|
panic("VMCTL_CLEARMAPCACHE failed");
|
|
}
|
|
|
|
int pt_writable(struct vmproc *vmp, vir_bytes v)
|
|
{
|
|
u32_t entry;
|
|
pt_t *pt = &vmp->vm_pt;
|
|
assert(!(v % VM_PAGE_SIZE));
|
|
int pde = ARCH_VM_PDE(v);
|
|
int pte = ARCH_VM_PTE(v);
|
|
|
|
assert(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT);
|
|
assert(pt->pt_pt[pde]);
|
|
|
|
entry = pt->pt_pt[pde][pte];
|
|
|
|
#if defined(__i386__)
|
|
return((entry & PTF_WRITE) ? 1 : 0);
|
|
#elif defined(__arm__)
|
|
return((entry & ARCH_VM_PTE_RO) ? 0 : 1);
|
|
#endif
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_writemap *
|
|
*===========================================================================*/
|
|
int pt_writemap(struct vmproc * vmp,
|
|
pt_t *pt,
|
|
vir_bytes v,
|
|
phys_bytes physaddr,
|
|
size_t bytes,
|
|
u32_t flags,
|
|
u32_t writemapflags)
|
|
{
|
|
/* Write mapping into page table. Allocate a new page table if necessary. */
|
|
/* Page directory and table entries for this virtual address. */
|
|
int p, pages;
|
|
int verify = 0;
|
|
int ret = OK;
|
|
|
|
#ifdef CONFIG_SMP
|
|
int vminhibit_clear = 0;
|
|
/* FIXME
|
|
* don't do it everytime, stop the process only on the first change and
|
|
* resume the execution on the last change. Do in a wrapper of this
|
|
* function
|
|
*/
|
|
if (vmp && vmp->vm_endpoint != NONE && vmp->vm_endpoint != VM_PROC_NR &&
|
|
!(vmp->vm_flags & VMF_EXITING)) {
|
|
sys_vmctl(vmp->vm_endpoint, VMCTL_VMINHIBIT_SET, 0);
|
|
vminhibit_clear = 1;
|
|
}
|
|
#endif
|
|
|
|
if(writemapflags & WMF_VERIFY)
|
|
verify = 1;
|
|
|
|
assert(!(bytes % VM_PAGE_SIZE));
|
|
assert(!(flags & ~(PTF_ALLFLAGS)));
|
|
|
|
pages = bytes / VM_PAGE_SIZE;
|
|
|
|
/* MAP_NONE means to clear the mapping. It doesn't matter
|
|
* what's actually written into the PTE if PRESENT
|
|
* isn't on, so we can just write MAP_NONE into it.
|
|
*/
|
|
assert(physaddr == MAP_NONE || (flags & ARCH_VM_PTE_PRESENT));
|
|
assert(physaddr != MAP_NONE || !flags);
|
|
|
|
/* First make sure all the necessary page tables are allocated,
|
|
* before we start writing in any of them, because it's a pain
|
|
* to undo our work properly.
|
|
*/
|
|
ret = pt_ptalloc_in_range(pt, v, v + VM_PAGE_SIZE*pages, flags, verify);
|
|
if(ret != OK) {
|
|
printf("VM: writemap: pt_ptalloc_in_range failed\n");
|
|
goto resume_exit;
|
|
}
|
|
|
|
/* Now write in them. */
|
|
for(p = 0; p < pages; p++) {
|
|
u32_t entry;
|
|
int pde = ARCH_VM_PDE(v);
|
|
int pte = ARCH_VM_PTE(v);
|
|
|
|
assert(!(v % VM_PAGE_SIZE));
|
|
assert(pte >= 0 && pte < ARCH_VM_PT_ENTRIES);
|
|
assert(pde >= 0 && pde < ARCH_VM_DIR_ENTRIES);
|
|
|
|
/* Page table has to be there. */
|
|
assert(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT);
|
|
|
|
/* We do not expect it to be a bigpage. */
|
|
assert(!(pt->pt_dir[pde] & ARCH_VM_BIGPAGE));
|
|
|
|
/* Make sure page directory entry for this page table
|
|
* is marked present and page table entry is available.
|
|
*/
|
|
assert(pt->pt_pt[pde]);
|
|
|
|
#if SANITYCHECKS
|
|
/* We don't expect to overwrite a page. */
|
|
if(!(writemapflags & (WMF_OVERWRITE|WMF_VERIFY)))
|
|
assert(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT));
|
|
#endif
|
|
if(writemapflags & (WMF_WRITEFLAGSONLY|WMF_FREE)) {
|
|
#if defined(__i386__)
|
|
physaddr = pt->pt_pt[pde][pte] & ARCH_VM_ADDR_MASK;
|
|
#elif defined(__arm__)
|
|
physaddr = pt->pt_pt[pde][pte] & ARM_VM_PTE_MASK;
|
|
#endif
|
|
}
|
|
|
|
if(writemapflags & WMF_FREE) {
|
|
free_mem(ABS2CLICK(physaddr), 1);
|
|
}
|
|
|
|
/* Entry we will write. */
|
|
#if defined(__i386__)
|
|
entry = (physaddr & ARCH_VM_ADDR_MASK) | flags;
|
|
#elif defined(__arm__)
|
|
entry = (physaddr & ARM_VM_PTE_MASK) | flags;
|
|
#endif
|
|
|
|
if(verify) {
|
|
u32_t maskedentry;
|
|
maskedentry = pt->pt_pt[pde][pte];
|
|
#if defined(__i386__)
|
|
maskedentry &= ~(I386_VM_ACC|I386_VM_DIRTY);
|
|
#endif
|
|
/* Verify pagetable entry. */
|
|
#if defined(__i386__)
|
|
if(entry & ARCH_VM_PTE_RW) {
|
|
/* If we expect a writable page, allow a readonly page. */
|
|
maskedentry |= ARCH_VM_PTE_RW;
|
|
}
|
|
#elif defined(__arm__)
|
|
if(!(entry & ARCH_VM_PTE_RO)) {
|
|
/* If we expect a writable page, allow a readonly page. */
|
|
maskedentry &= ~ARCH_VM_PTE_RO;
|
|
}
|
|
maskedentry &= ~(ARM_VM_PTE_WB|ARM_VM_PTE_WT);
|
|
#endif
|
|
if(maskedentry != entry) {
|
|
printf("pt_writemap: mismatch: ");
|
|
#if defined(__i386__)
|
|
if((entry & ARCH_VM_ADDR_MASK) !=
|
|
(maskedentry & ARCH_VM_ADDR_MASK)) {
|
|
#elif defined(__arm__)
|
|
if((entry & ARM_VM_PTE_MASK) !=
|
|
(maskedentry & ARM_VM_PTE_MASK)) {
|
|
#endif
|
|
printf("pt_writemap: physaddr mismatch (0x%lx, 0x%lx); ",
|
|
(long)entry, (long)maskedentry);
|
|
} else printf("phys ok; ");
|
|
printf(" flags: found %s; ",
|
|
ptestr(pt->pt_pt[pde][pte]));
|
|
printf(" masked %s; ",
|
|
ptestr(maskedentry));
|
|
printf(" expected %s\n", ptestr(entry));
|
|
printf("found 0x%x, wanted 0x%x\n",
|
|
pt->pt_pt[pde][pte], entry);
|
|
ret = EFAULT;
|
|
goto resume_exit;
|
|
}
|
|
} else {
|
|
/* Write pagetable entry. */
|
|
pt->pt_pt[pde][pte] = entry;
|
|
}
|
|
|
|
physaddr += VM_PAGE_SIZE;
|
|
v += VM_PAGE_SIZE;
|
|
}
|
|
|
|
resume_exit:
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (vminhibit_clear) {
|
|
assert(vmp && vmp->vm_endpoint != NONE && vmp->vm_endpoint != VM_PROC_NR &&
|
|
!(vmp->vm_flags & VMF_EXITING));
|
|
sys_vmctl(vmp->vm_endpoint, VMCTL_VMINHIBIT_CLEAR, 0);
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_checkrange *
|
|
*===========================================================================*/
|
|
int pt_checkrange(pt_t *pt, vir_bytes v, size_t bytes,
|
|
int write)
|
|
{
|
|
int p, pages;
|
|
|
|
assert(!(bytes % VM_PAGE_SIZE));
|
|
|
|
pages = bytes / VM_PAGE_SIZE;
|
|
|
|
for(p = 0; p < pages; p++) {
|
|
int pde = ARCH_VM_PDE(v);
|
|
int pte = ARCH_VM_PTE(v);
|
|
|
|
assert(!(v % VM_PAGE_SIZE));
|
|
assert(pte >= 0 && pte < ARCH_VM_PT_ENTRIES);
|
|
assert(pde >= 0 && pde < ARCH_VM_DIR_ENTRIES);
|
|
|
|
/* Page table has to be there. */
|
|
if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT))
|
|
return EFAULT;
|
|
|
|
/* Make sure page directory entry for this page table
|
|
* is marked present and page table entry is available.
|
|
*/
|
|
assert((pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT) && pt->pt_pt[pde]);
|
|
|
|
if(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) {
|
|
return EFAULT;
|
|
}
|
|
|
|
#if defined(__i386__)
|
|
if(write && !(pt->pt_pt[pde][pte] & ARCH_VM_PTE_RW)) {
|
|
#elif defined(__arm__)
|
|
if(write && (pt->pt_pt[pde][pte] & ARCH_VM_PTE_RO)) {
|
|
#endif
|
|
return EFAULT;
|
|
}
|
|
|
|
v += VM_PAGE_SIZE;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_new *
|
|
*===========================================================================*/
|
|
int pt_new(pt_t *pt)
|
|
{
|
|
/* Allocate a pagetable root. Allocate a page-aligned page directory
|
|
* and set them to 0 (indicating no page tables are allocated). Lookup
|
|
* its physical address as we'll need that in the future. Verify it's
|
|
* page-aligned.
|
|
*/
|
|
int i, r;
|
|
|
|
/* Don't ever re-allocate/re-move a certain process slot's
|
|
* page directory once it's been created. This is a fraction
|
|
* faster, but also avoids having to invalidate the page
|
|
* mappings from in-kernel page tables pointing to
|
|
* the page directories (the page_directories data).
|
|
*/
|
|
if(!pt->pt_dir &&
|
|
!(pt->pt_dir = vm_allocpages((phys_bytes *)&pt->pt_dir_phys,
|
|
VMP_PAGEDIR, ARCH_PAGEDIR_SIZE/VM_PAGE_SIZE))) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
assert(!((u32_t)pt->pt_dir_phys % ARCH_PAGEDIR_SIZE));
|
|
|
|
for(i = 0; i < ARCH_VM_DIR_ENTRIES; i++) {
|
|
pt->pt_dir[i] = 0; /* invalid entry (PRESENT bit = 0) */
|
|
pt->pt_pt[i] = NULL;
|
|
}
|
|
|
|
/* Where to start looking for free virtual address space? */
|
|
pt->pt_virtop = 0;
|
|
|
|
/* Map in kernel. */
|
|
if((r=pt_mapkernel(pt)) != OK)
|
|
return r;
|
|
|
|
return OK;
|
|
}
|
|
|
|
static int freepde(void)
|
|
{
|
|
int p = kernel_boot_info.freepde_start++;
|
|
assert(kernel_boot_info.freepde_start < ARCH_VM_DIR_ENTRIES);
|
|
return p;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_init *
|
|
*===========================================================================*/
|
|
void pt_init(void)
|
|
{
|
|
pt_t *newpt;
|
|
int s, r, p;
|
|
vir_bytes sparepages_mem;
|
|
#if defined(__arm__)
|
|
vir_bytes sparepagedirs_mem;
|
|
#endif
|
|
static u32_t currentpagedir[ARCH_VM_DIR_ENTRIES];
|
|
int m = kernel_boot_info.kern_mod;
|
|
#if defined(__i386__)
|
|
int global_bit_ok = 0;
|
|
u32_t mypdbr; /* Page Directory Base Register (cr3) value */
|
|
#elif defined(__arm__)
|
|
u32_t myttbr;
|
|
#endif
|
|
|
|
/* Find what the physical location of the kernel is. */
|
|
assert(m >= 0);
|
|
assert(m < kernel_boot_info.mods_with_kernel);
|
|
assert(kernel_boot_info.mods_with_kernel < MULTIBOOT_MAX_MODS);
|
|
kern_mb_mod = &kernel_boot_info.module_list[m];
|
|
kern_size = kern_mb_mod->mod_end - kern_mb_mod->mod_start;
|
|
assert(!(kern_mb_mod->mod_start % ARCH_BIG_PAGE_SIZE));
|
|
assert(!(kernel_boot_info.vir_kern_start % ARCH_BIG_PAGE_SIZE));
|
|
kern_start_pde = kernel_boot_info.vir_kern_start / ARCH_BIG_PAGE_SIZE;
|
|
|
|
/* Get ourselves spare pages. */
|
|
sparepages_mem = (vir_bytes) static_sparepages;
|
|
assert(!(sparepages_mem % VM_PAGE_SIZE));
|
|
|
|
#if defined(__arm__)
|
|
/* Get ourselves spare pagedirs. */
|
|
sparepagedirs_mem = (vir_bytes) static_sparepagedirs;
|
|
assert(!(sparepagedirs_mem % ARCH_PAGEDIR_SIZE));
|
|
#endif
|
|
|
|
/* Spare pages are used to allocate memory before VM has its own page
|
|
* table that things (i.e. arbitrary physical memory) can be mapped into.
|
|
* We get it by pre-allocating it in our bss (allocated and mapped in by
|
|
* the kernel) in static_sparepages. We also need the physical addresses
|
|
* though; we look them up now so they are ready for use.
|
|
*/
|
|
#if defined(__arm__)
|
|
missing_sparedirs = 0;
|
|
assert(STATIC_SPAREPAGEDIRS <= SPAREPAGEDIRS);
|
|
for(s = 0; s < SPAREPAGEDIRS; s++) {
|
|
vir_bytes v = (sparepagedirs_mem + s*ARCH_PAGEDIR_SIZE);;
|
|
phys_bytes ph;
|
|
if((r=sys_umap(SELF, VM_D, (vir_bytes) v,
|
|
ARCH_PAGEDIR_SIZE, &ph)) != OK)
|
|
panic("pt_init: sys_umap failed: %d", r);
|
|
if(s >= STATIC_SPAREPAGEDIRS) {
|
|
sparepagedirs[s].pagedir = NULL;
|
|
missing_sparedirs++;
|
|
continue;
|
|
}
|
|
sparepagedirs[s].pagedir = (void *) v;
|
|
sparepagedirs[s].phys = ph;
|
|
}
|
|
#endif
|
|
|
|
if(!(spare_pagequeue = reservedqueue_new(SPAREPAGES, 1, 1, 0)))
|
|
panic("reservedqueue_new for single pages failed");
|
|
|
|
assert(STATIC_SPAREPAGES < SPAREPAGES);
|
|
for(s = 0; s < STATIC_SPAREPAGES; s++) {
|
|
void *v = (void *) (sparepages_mem + s*VM_PAGE_SIZE);
|
|
phys_bytes ph;
|
|
if((r=sys_umap(SELF, VM_D, (vir_bytes) v,
|
|
VM_PAGE_SIZE*SPAREPAGES, &ph)) != OK)
|
|
panic("pt_init: sys_umap failed: %d", r);
|
|
reservedqueue_add(spare_pagequeue, v, ph);
|
|
}
|
|
|
|
#if defined(__i386__)
|
|
/* global bit and 4MB pages available? */
|
|
global_bit_ok = _cpufeature(_CPUF_I386_PGE);
|
|
bigpage_ok = _cpufeature(_CPUF_I386_PSE);
|
|
|
|
/* Set bit for PTE's and PDE's if available. */
|
|
if(global_bit_ok)
|
|
global_bit = I386_VM_GLOBAL;
|
|
#endif
|
|
|
|
/* Now reserve another pde for kernel's own mappings. */
|
|
{
|
|
int kernmap_pde;
|
|
phys_bytes addr, len;
|
|
int flags, pindex = 0;
|
|
u32_t offset = 0;
|
|
|
|
kernmap_pde = freepde();
|
|
offset = kernmap_pde * ARCH_BIG_PAGE_SIZE;
|
|
|
|
while(sys_vmctl_get_mapping(pindex, &addr, &len,
|
|
&flags) == OK) {
|
|
int usedpde;
|
|
vir_bytes vir;
|
|
if(pindex >= MAX_KERNMAPPINGS)
|
|
panic("VM: too many kernel mappings: %d", pindex);
|
|
kern_mappings[pindex].phys_addr = addr;
|
|
kern_mappings[pindex].len = len;
|
|
kern_mappings[pindex].flags = flags;
|
|
kern_mappings[pindex].vir_addr = offset;
|
|
kern_mappings[pindex].flags =
|
|
ARCH_VM_PTE_PRESENT;
|
|
if(flags & VMMF_UNCACHED)
|
|
#if defined(__i386__)
|
|
kern_mappings[pindex].flags |= PTF_NOCACHE;
|
|
#elif defined(__arm__)
|
|
kern_mappings[pindex].flags |= ARM_VM_PTE_DEVICE;
|
|
else {
|
|
kern_mappings[pindex].flags |= ARM_VM_PTE_CACHED;
|
|
}
|
|
#endif
|
|
if(flags & VMMF_USER)
|
|
kern_mappings[pindex].flags |= ARCH_VM_PTE_USER;
|
|
#if defined(__arm__)
|
|
else
|
|
kern_mappings[pindex].flags |= ARM_VM_PTE_SUPER;
|
|
#endif
|
|
if(flags & VMMF_WRITE)
|
|
kern_mappings[pindex].flags |= ARCH_VM_PTE_RW;
|
|
#if defined(__arm__)
|
|
else
|
|
kern_mappings[pindex].flags |= ARCH_VM_PTE_RO;
|
|
#endif
|
|
|
|
#if defined(__i386__)
|
|
if(flags & VMMF_GLO)
|
|
kern_mappings[pindex].flags |= I386_VM_GLOBAL;
|
|
#endif
|
|
|
|
if(addr % VM_PAGE_SIZE)
|
|
panic("VM: addr unaligned: %lu", addr);
|
|
if(len % VM_PAGE_SIZE)
|
|
panic("VM: len unaligned: %lu", len);
|
|
vir = offset;
|
|
if(sys_vmctl_reply_mapping(pindex, vir) != OK)
|
|
panic("VM: reply failed");
|
|
offset += len;
|
|
pindex++;
|
|
kernmappings++;
|
|
|
|
usedpde = ARCH_VM_PDE(offset);
|
|
while(usedpde > kernmap_pde) {
|
|
int newpde = freepde();
|
|
assert(newpde == kernmap_pde+1);
|
|
kernmap_pde = newpde;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reserve PDEs available for mapping in the page directories. */
|
|
{
|
|
int pd;
|
|
for(pd = 0; pd < MAX_PAGEDIR_PDES; pd++) {
|
|
struct pdm *pdm = &pagedir_mappings[pd];
|
|
pdm->pdeno = freepde();
|
|
phys_bytes ph;
|
|
|
|
/* Allocate us a page table in which to
|
|
* remember page directory pointers.
|
|
*/
|
|
if(!(pdm->page_directories =
|
|
vm_allocpage(&ph, VMP_PAGETABLE))) {
|
|
panic("no virt addr for vm mappings");
|
|
}
|
|
memset(pdm->page_directories, 0, VM_PAGE_SIZE);
|
|
pdm->phys = ph;
|
|
|
|
#if defined(__i386__)
|
|
pdm->val = (ph & ARCH_VM_ADDR_MASK) |
|
|
ARCH_VM_PDE_PRESENT | ARCH_VM_PTE_RW;
|
|
#elif defined(__arm__)
|
|
pdm->val = (ph & ARCH_VM_PDE_MASK)
|
|
| ARCH_VM_PDE_PRESENT
|
|
| ARM_VM_PTE_CACHED
|
|
| ARM_VM_PDE_DOMAIN; //LSC FIXME
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Allright. Now. We have to make our own page directory and page tables,
|
|
* that the kernel has already set up, accessible to us. It's easier to
|
|
* understand if we just copy all the required pages (i.e. page directory
|
|
* and page tables), and set up the pointers as if VM had done it itself.
|
|
*
|
|
* This allocation will happen without using any page table, and just
|
|
* uses spare pages.
|
|
*/
|
|
newpt = &vmprocess->vm_pt;
|
|
if(pt_new(newpt) != OK)
|
|
panic("vm pt_new failed");
|
|
|
|
/* Get our current pagedir so we can see it. */
|
|
#if defined(__i386__)
|
|
if(sys_vmctl_get_pdbr(SELF, &mypdbr) != OK)
|
|
#elif defined(__arm__)
|
|
if(sys_vmctl_get_pdbr(SELF, &myttbr) != OK)
|
|
#endif
|
|
|
|
panic("VM: sys_vmctl_get_pdbr failed");
|
|
#if defined(__i386__)
|
|
if(sys_vircopy(NONE, mypdbr, SELF,
|
|
(vir_bytes) currentpagedir, VM_PAGE_SIZE) != OK)
|
|
#elif defined(__arm__)
|
|
if(sys_vircopy(NONE, myttbr, SELF,
|
|
(vir_bytes) currentpagedir, ARCH_PAGEDIR_SIZE) != OK)
|
|
#endif
|
|
panic("VM: sys_vircopy failed");
|
|
|
|
/* We have mapped in kernel ourselves; now copy mappings for VM
|
|
* that kernel made, including allocations for BSS. Skip identity
|
|
* mapping bits; just map in VM.
|
|
*/
|
|
for(p = 0; p < ARCH_VM_DIR_ENTRIES; p++) {
|
|
u32_t entry = currentpagedir[p];
|
|
phys_bytes ptaddr_kern, ptaddr_us;
|
|
|
|
/* BIGPAGEs are kernel mapping (do ourselves) or boot
|
|
* identity mapping (don't want).
|
|
*/
|
|
if(!(entry & ARCH_VM_PDE_PRESENT)) continue;
|
|
if((entry & ARCH_VM_BIGPAGE)) continue;
|
|
|
|
if(pt_ptalloc(newpt, p, 0) != OK)
|
|
panic("pt_ptalloc failed");
|
|
assert(newpt->pt_dir[p] & ARCH_VM_PDE_PRESENT);
|
|
|
|
#if defined(__i386__)
|
|
ptaddr_kern = entry & ARCH_VM_ADDR_MASK;
|
|
ptaddr_us = newpt->pt_dir[p] & ARCH_VM_ADDR_MASK;
|
|
#elif defined(__arm__)
|
|
ptaddr_kern = entry & ARCH_VM_PDE_MASK;
|
|
ptaddr_us = newpt->pt_dir[p] & ARCH_VM_PDE_MASK;
|
|
#endif
|
|
|
|
/* Copy kernel-initialized pagetable contents into our
|
|
* normally accessible pagetable.
|
|
*/
|
|
if(sys_abscopy(ptaddr_kern, ptaddr_us, VM_PAGE_SIZE) != OK)
|
|
panic("pt_init: abscopy failed");
|
|
}
|
|
|
|
/* Inform kernel vm has a newly built page table. */
|
|
assert(vmproc[VM_PROC_NR].vm_endpoint == VM_PROC_NR);
|
|
pt_bind(newpt, &vmproc[VM_PROC_NR]);
|
|
|
|
pt_init_done = 1;
|
|
|
|
/* All OK. */
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_bind *
|
|
*===========================================================================*/
|
|
int pt_bind(pt_t *pt, struct vmproc *who)
|
|
{
|
|
int procslot, pdeslot;
|
|
u32_t phys;
|
|
void *pdes;
|
|
int pagedir_pde;
|
|
int slots_per_pde;
|
|
int pages_per_pagedir = ARCH_PAGEDIR_SIZE/VM_PAGE_SIZE;
|
|
struct pdm *pdm;
|
|
|
|
slots_per_pde = ARCH_VM_PT_ENTRIES / pages_per_pagedir;
|
|
|
|
/* Basic sanity checks. */
|
|
assert(who);
|
|
assert(who->vm_flags & VMF_INUSE);
|
|
assert(pt);
|
|
|
|
procslot = who->vm_slot;
|
|
pdm = &pagedir_mappings[procslot/slots_per_pde];
|
|
pdeslot = procslot%slots_per_pde;
|
|
pagedir_pde = pdm->pdeno;
|
|
assert(pdeslot >= 0);
|
|
assert(procslot < ELEMENTS(vmproc));
|
|
assert(pdeslot < ARCH_VM_PT_ENTRIES / pages_per_pagedir);
|
|
assert(pagedir_pde >= 0);
|
|
|
|
#if defined(__i386__)
|
|
phys = pt->pt_dir_phys & ARCH_VM_ADDR_MASK;
|
|
#elif defined(__arm__)
|
|
phys = pt->pt_dir_phys & ARM_VM_PTE_MASK;
|
|
#endif
|
|
assert(pt->pt_dir_phys == phys);
|
|
assert(!(pt->pt_dir_phys % ARCH_PAGEDIR_SIZE));
|
|
|
|
/* Update "page directory pagetable." */
|
|
#if defined(__i386__)
|
|
pdm->page_directories[pdeslot] =
|
|
phys | ARCH_VM_PDE_PRESENT|ARCH_VM_PTE_RW;
|
|
#elif defined(__arm__)
|
|
{
|
|
int i;
|
|
for (i = 0; i < pages_per_pagedir; i++) {
|
|
pdm->page_directories[pdeslot*pages_per_pagedir+i] =
|
|
(phys+i*VM_PAGE_SIZE)
|
|
| ARCH_VM_PTE_PRESENT
|
|
| ARCH_VM_PTE_RW
|
|
| ARM_VM_PTE_CACHED
|
|
| ARCH_VM_PTE_USER; //LSC FIXME
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* This is where the PDE's will be visible to the kernel
|
|
* in its address space.
|
|
*/
|
|
pdes = (void *) (pagedir_pde*ARCH_BIG_PAGE_SIZE +
|
|
#if defined(__i386__)
|
|
pdeslot * VM_PAGE_SIZE);
|
|
#elif defined(__arm__)
|
|
pdeslot * ARCH_PAGEDIR_SIZE);
|
|
#endif
|
|
|
|
/* Tell kernel about new page table root. */
|
|
return sys_vmctl_set_addrspace(who->vm_endpoint, pt->pt_dir_phys , pdes);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_free *
|
|
*===========================================================================*/
|
|
void pt_free(pt_t *pt)
|
|
{
|
|
/* Free memory associated with this pagetable. */
|
|
int i;
|
|
|
|
for(i = 0; i < ARCH_VM_DIR_ENTRIES; i++)
|
|
if(pt->pt_pt[i])
|
|
vm_freepages((vir_bytes) pt->pt_pt[i], 1);
|
|
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_mapkernel *
|
|
*===========================================================================*/
|
|
int pt_mapkernel(pt_t *pt)
|
|
{
|
|
int i;
|
|
int kern_pde = kern_start_pde;
|
|
phys_bytes addr, mapped = 0;
|
|
|
|
/* Any page table needs to map in the kernel address space. */
|
|
assert(bigpage_ok);
|
|
assert(kern_pde >= 0);
|
|
|
|
/* pt_init() has made sure this is ok. */
|
|
addr = kern_mb_mod->mod_start;
|
|
|
|
/* Actually mapping in kernel */
|
|
while(mapped < kern_size) {
|
|
#if defined(__i386__)
|
|
pt->pt_dir[kern_pde] = addr | ARCH_VM_PDE_PRESENT |
|
|
ARCH_VM_BIGPAGE | ARCH_VM_PTE_RW | global_bit;
|
|
#elif defined(__arm__)
|
|
pt->pt_dir[kern_pde] = (addr & ARM_VM_SECTION_MASK)
|
|
| ARM_VM_SECTION
|
|
| ARM_VM_SECTION_DOMAIN
|
|
| ARM_VM_SECTION_CACHED
|
|
| ARM_VM_SECTION_SUPER;
|
|
#endif
|
|
kern_pde++;
|
|
mapped += ARCH_BIG_PAGE_SIZE;
|
|
addr += ARCH_BIG_PAGE_SIZE;
|
|
}
|
|
|
|
/* Kernel also wants to know about all page directories. */
|
|
{
|
|
int pd;
|
|
for(pd = 0; pd < MAX_PAGEDIR_PDES; pd++) {
|
|
struct pdm *pdm = &pagedir_mappings[pd];
|
|
|
|
assert(pdm->pdeno > 0);
|
|
assert(pdm->pdeno > kern_pde);
|
|
pt->pt_dir[pdm->pdeno] = pdm->val;
|
|
}
|
|
}
|
|
|
|
/* Kernel also wants various mappings of its own. */
|
|
for(i = 0; i < kernmappings; i++) {
|
|
int r;
|
|
if((r=pt_writemap(NULL, pt,
|
|
kern_mappings[i].vir_addr,
|
|
kern_mappings[i].phys_addr,
|
|
kern_mappings[i].len,
|
|
kern_mappings[i].flags, 0)) != OK) {
|
|
return r;
|
|
}
|
|
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
int get_vm_self_pages(void) { return vm_self_pages; }
|