544 lines
20 KiB
C
Executable file
544 lines
20 KiB
C
Executable file
/* This task handles the interface between the kernel and user-level servers.
|
|
* System services can be accessed by doing a system call. System calls are
|
|
* transformed into request messages, which are handled by this task. By
|
|
* convention, a sys_call() is transformed in a SYS_CALL request message that
|
|
* is handled in a function named do_call().
|
|
*
|
|
* A private call vector is used to map all system calls to the functions that
|
|
* handle them. The actual handler functions are contained in separate files
|
|
* to keep this file clean. The call vector is used in the system task's main
|
|
* loop to handle all incoming requests.
|
|
*
|
|
* In addition to the main sys_task() entry point, which starts the main loop,
|
|
* there are several other minor entry points:
|
|
* get_priv: assign privilege structure to user or system process
|
|
* send_sig: send a signal directly to a system process
|
|
* cause_sig: take action to cause a signal to occur via PM
|
|
* umap_bios: map virtual address in BIOS_SEG to physical
|
|
* virtual_copy: copy bytes from one virtual address to another
|
|
* get_randomness: accumulate randomness in a buffer
|
|
* clear_endpoint: remove a process' ability to send and receive messages
|
|
*
|
|
* Changes:
|
|
* Aug 04, 2005 check if system call is allowed (Jorrit N. Herder)
|
|
* Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
|
|
* Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
|
|
* Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
|
|
* Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
|
*/
|
|
|
|
#include "debug.h"
|
|
#include "kernel.h"
|
|
#include "system.h"
|
|
#include "proc.h"
|
|
#include <stdlib.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <sys/sigcontext.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/safecopies.h>
|
|
|
|
/* Declaration of the call vector that defines the mapping of system calls
|
|
* to handler functions. The vector is initialized in sys_init() with map(),
|
|
* which makes sure the system call numbers are ok. No space is allocated,
|
|
* because the dummy is declared extern. If an illegal call is given, the
|
|
* array size will be negative and this won't compile.
|
|
*/
|
|
PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr);
|
|
|
|
#define map(call_nr, handler) \
|
|
{extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \
|
|
call_vec[(call_nr-KERNEL_CALL)] = (handler)
|
|
|
|
FORWARD _PROTOTYPE( void initialize, (void));
|
|
|
|
/*===========================================================================*
|
|
* sys_task *
|
|
*===========================================================================*/
|
|
PUBLIC void sys_task()
|
|
{
|
|
/* Main entry point of sys_task. Get the message and dispatch on type. */
|
|
static message m;
|
|
register int result;
|
|
register struct proc *caller_ptr;
|
|
int s;
|
|
int call_nr;
|
|
|
|
/* Initialize the system task. */
|
|
initialize();
|
|
|
|
while (TRUE) {
|
|
int r;
|
|
/* Get work. Block and wait until a request message arrives. */
|
|
if((r=receive(ANY, &m)) != OK) panic("system: receive() failed", r);
|
|
sys_call_code = (unsigned) m.m_type;
|
|
call_nr = sys_call_code - KERNEL_CALL;
|
|
who_e = m.m_source;
|
|
okendpt(who_e, &who_p);
|
|
caller_ptr = proc_addr(who_p);
|
|
|
|
/* See if the caller made a valid request and try to handle it. */
|
|
if (call_nr < 0 || call_nr >= NR_SYS_CALLS) { /* check call number */
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("SYSTEM: illegal request %d from %d.\n",
|
|
call_nr,m.m_source);
|
|
#endif
|
|
result = EBADREQUEST; /* illegal message type */
|
|
}
|
|
else if (!GET_BIT(priv(caller_ptr)->s_k_call_mask, call_nr)) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("SYSTEM: request %d from %d denied.\n",
|
|
call_nr,m.m_source);
|
|
#endif
|
|
result = ECALLDENIED; /* illegal message type */
|
|
}
|
|
else {
|
|
result = (*call_vec[call_nr])(&m); /* handle the system call */
|
|
}
|
|
|
|
/* Send a reply, unless inhibited by a handler function. Use the kernel
|
|
* function lock_send() to prevent a system call trap. The destination
|
|
* is known to be blocked waiting for a message.
|
|
*/
|
|
if (result != EDONTREPLY) {
|
|
m.m_type = result; /* report status of call */
|
|
if (OK != (s=lock_send(m.m_source, &m))) {
|
|
kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* initialize *
|
|
*===========================================================================*/
|
|
PRIVATE void initialize(void)
|
|
{
|
|
register struct priv *sp;
|
|
int i;
|
|
|
|
/* Initialize IRQ handler hooks. Mark all hooks available. */
|
|
for (i=0; i<NR_IRQ_HOOKS; i++) {
|
|
irq_hooks[i].proc_nr_e = NONE;
|
|
}
|
|
|
|
/* Initialize all alarm timers for all processes. */
|
|
for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
|
|
tmr_inittimer(&(sp->s_alarm_timer));
|
|
}
|
|
|
|
/* Initialize the call vector to a safe default handler. Some system calls
|
|
* may be disabled or nonexistant. Then explicitely map known calls to their
|
|
* handler functions. This is done with a macro that gives a compile error
|
|
* if an illegal call number is used. The ordering is not important here.
|
|
*/
|
|
for (i=0; i<NR_SYS_CALLS; i++) {
|
|
call_vec[i] = do_unused;
|
|
}
|
|
|
|
/* Process management. */
|
|
map(SYS_FORK, do_fork); /* a process forked a new process */
|
|
map(SYS_EXEC, do_exec); /* update process after execute */
|
|
map(SYS_EXIT, do_exit); /* clean up after process exit */
|
|
map(SYS_NICE, do_nice); /* set scheduling priority */
|
|
map(SYS_PRIVCTL, do_privctl); /* system privileges control */
|
|
map(SYS_TRACE, do_trace); /* request a trace operation */
|
|
map(SYS_SETGRANT, do_setgrant); /* get/set own parameters */
|
|
|
|
/* Signal handling. */
|
|
map(SYS_KILL, do_kill); /* cause a process to be signaled */
|
|
map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */
|
|
map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */
|
|
map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
|
|
map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
|
|
|
|
/* Device I/O. */
|
|
map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
|
|
map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */
|
|
map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
|
|
|
|
/* Memory management. */
|
|
map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
|
|
map(SYS_SEGCTL, do_segctl); /* add segment and get selector */
|
|
map(SYS_MEMSET, do_memset); /* write char to memory area */
|
|
map(SYS_VM_SETBUF, do_vm_setbuf); /* PM passes buffer for page tables */
|
|
map(SYS_VM_MAP, do_vm_map); /* Map/unmap physical (device) memory */
|
|
|
|
/* Copying. */
|
|
map(SYS_UMAP, do_umap); /* map virtual to physical address */
|
|
map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
|
|
map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */
|
|
map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */
|
|
map(SYS_PHYSVCOPY, do_physvcopy); /* vector with copy requests */
|
|
map(SYS_SAFECOPYFROM, do_safecopy); /* copy with pre-granted permission */
|
|
map(SYS_SAFECOPYTO, do_safecopy); /* copy with pre-granted permission */
|
|
map(SYS_VSAFECOPY, do_vsafecopy); /* vectored safecopy */
|
|
|
|
/* Clock functionality. */
|
|
map(SYS_TIMES, do_times); /* get uptime and process times */
|
|
map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
|
|
|
|
/* System control. */
|
|
map(SYS_ABORT, do_abort); /* abort MINIX */
|
|
map(SYS_GETINFO, do_getinfo); /* request system information */
|
|
|
|
/* Profiling. */
|
|
map(SYS_SPROF, do_sprofile); /* start/stop statistical profiling */
|
|
map(SYS_CPROF, do_cprofile); /* get/reset call profiling data */
|
|
map(SYS_PROFBUF, do_profbuf); /* announce locations to kernel */
|
|
|
|
/* i386-specific. */
|
|
#if _MINIX_CHIP == _CHIP_INTEL
|
|
map(SYS_INT86, do_int86); /* real-mode BIOS calls */
|
|
map(SYS_READBIOS, do_readbios); /* read from BIOS locations */
|
|
map(SYS_IOPENABLE, do_iopenable); /* Enable I/O */
|
|
map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
|
|
#endif
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_priv *
|
|
*===========================================================================*/
|
|
PUBLIC int get_priv(rc, proc_type)
|
|
register struct proc *rc; /* new (child) process pointer */
|
|
int proc_type; /* system or user process flag */
|
|
{
|
|
/* Get a privilege structure. All user processes share the same privilege
|
|
* structure. System processes get their own privilege structure.
|
|
*/
|
|
register struct priv *sp; /* privilege structure */
|
|
|
|
if (proc_type == SYS_PROC) { /* find a new slot */
|
|
for (sp = BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp)
|
|
if (sp->s_proc_nr == NONE && sp->s_id != USER_PRIV_ID) break;
|
|
if (sp >= END_PRIV_ADDR) return(ENOSPC);
|
|
rc->p_priv = sp; /* assign new slot */
|
|
rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */
|
|
rc->p_priv->s_flags = SYS_PROC; /* mark as privileged */
|
|
|
|
/* Clear some fields */
|
|
sp->s_asyntab= -1;
|
|
sp->s_asynsize= 0;
|
|
} else {
|
|
rc->p_priv = &priv[USER_PRIV_ID]; /* use shared slot */
|
|
rc->p_priv->s_proc_nr = INIT_PROC_NR; /* set association */
|
|
|
|
/* s_flags of this shared structure are to be once at system startup. */
|
|
}
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_randomness *
|
|
*===========================================================================*/
|
|
PUBLIC void get_randomness(source)
|
|
int source;
|
|
{
|
|
/* Use architecture-dependent high-resolution clock for
|
|
* raw entropy gathering.
|
|
*/
|
|
int r_next;
|
|
unsigned long tsc_high, tsc_low;
|
|
|
|
source %= RANDOM_SOURCES;
|
|
r_next= krandom.bin[source].r_next;
|
|
read_tsc(&tsc_high, &tsc_low);
|
|
krandom.bin[source].r_buf[r_next] = tsc_low;
|
|
if (krandom.bin[source].r_size < RANDOM_ELEMENTS) {
|
|
krandom.bin[source].r_size ++;
|
|
}
|
|
krandom.bin[source].r_next = (r_next + 1 ) % RANDOM_ELEMENTS;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* send_sig *
|
|
*===========================================================================*/
|
|
PUBLIC void send_sig(int proc_nr, int sig_nr)
|
|
{
|
|
/* Notify a system process about a signal. This is straightforward. Simply
|
|
* set the signal that is to be delivered in the pending signals map and
|
|
* send a notification with source SYSTEM.
|
|
*
|
|
* Process number is verified to avoid writing in random places, but we
|
|
* don't kprintf() or panic() because that causes send_sig() invocations.
|
|
*/
|
|
register struct proc *rp;
|
|
static int n;
|
|
|
|
if(!isokprocn(proc_nr) || isemptyn(proc_nr))
|
|
return;
|
|
|
|
rp = proc_addr(proc_nr);
|
|
sigaddset(&priv(rp)->s_sig_pending, sig_nr);
|
|
lock_notify(SYSTEM, rp->p_endpoint);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* cause_sig *
|
|
*===========================================================================*/
|
|
PUBLIC void cause_sig(proc_nr, sig_nr)
|
|
int proc_nr; /* process to be signalled */
|
|
int sig_nr; /* signal to be sent, 1 to _NSIG */
|
|
{
|
|
/* A system process wants to send a signal to a process. Examples are:
|
|
* - HARDWARE wanting to cause a SIGSEGV after a CPU exception
|
|
* - TTY wanting to cause SIGINT upon getting a DEL
|
|
* - FS wanting to cause SIGPIPE for a broken pipe
|
|
* Signals are handled by sending a message to PM. This function handles the
|
|
* signals and makes sure the PM gets them by sending a notification. The
|
|
* process being signaled is blocked while PM has not finished all signals
|
|
* for it.
|
|
* Race conditions between calls to this function and the system calls that
|
|
* process pending kernel signals cannot exist. Signal related functions are
|
|
* only called when a user process causes a CPU exception and from the kernel
|
|
* process level, which runs to completion.
|
|
*/
|
|
register struct proc *rp;
|
|
|
|
if (proc_nr == PM_PROC_NR)
|
|
panic("cause_sig: PM gets signal", NO_NUM);
|
|
|
|
/* Check if the signal is already pending. Process it otherwise. */
|
|
rp = proc_addr(proc_nr);
|
|
if (! sigismember(&rp->p_pending, sig_nr)) {
|
|
sigaddset(&rp->p_pending, sig_nr);
|
|
if (! (RTS_ISSET(rp, SIGNALED))) { /* other pending */
|
|
RTS_LOCK_SET(rp, SIGNALED | SIG_PENDING);
|
|
send_sig(PM_PROC_NR, SIGKSIG);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if _MINIX_CHIP == _CHIP_INTEL
|
|
|
|
/*===========================================================================*
|
|
* umap_bios *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
vir_bytes vir_addr; /* virtual address in BIOS segment */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
/* Calculate the physical memory address at the BIOS. Note: currently, BIOS
|
|
* address zero (the first BIOS interrupt vector) is not considered as an
|
|
* error here, but since the physical address will be zero as well, the
|
|
* calling function will think an error occurred. This is not a problem,
|
|
* since no one uses the first BIOS interrupt vector.
|
|
*/
|
|
|
|
/* Check all acceptable ranges. */
|
|
if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END)
|
|
return (phys_bytes) vir_addr;
|
|
else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END)
|
|
return (phys_bytes) vir_addr;
|
|
|
|
kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*===========================================================================*
|
|
* umap_verify_grant *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_verify_grant(rp, grantee, grant, offset, bytes, access)
|
|
struct proc *rp; /* pointer to proc table entry for process */
|
|
endpoint_t grantee; /* who wants to do this */
|
|
cp_grant_id_t grant; /* grant no. */
|
|
vir_bytes offset; /* offset into grant */
|
|
vir_bytes bytes; /* size */
|
|
int access; /* does grantee want to CPF_READ or _WRITE? */
|
|
{
|
|
int proc_nr;
|
|
vir_bytes v_offset;
|
|
endpoint_t granter;
|
|
|
|
/* See if the grant in that process is sensible, and
|
|
* find out the virtual address and (optionally) new
|
|
* process for that address.
|
|
*
|
|
* Then convert that process to a slot number.
|
|
*/
|
|
if(verify_grant(rp->p_endpoint, grantee, grant, bytes, access, offset,
|
|
&v_offset, &granter) != OK
|
|
|| !isokendpt(granter, &proc_nr)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Do the mapping from virtual to physical. */
|
|
return umap_local(proc_addr(proc_nr), D, v_offset, bytes);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* umap_grant *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_grant(rp, grant, bytes)
|
|
struct proc *rp; /* pointer to proc table entry for process */
|
|
cp_grant_id_t grant; /* grant no. */
|
|
vir_bytes bytes; /* size */
|
|
{
|
|
int proc_nr;
|
|
vir_bytes offset;
|
|
endpoint_t granter;
|
|
|
|
/* See if the grant in that process is sensible, and
|
|
* find out the virtual address and (optionally) new
|
|
* process for that address.
|
|
*
|
|
* Then convert that process to a slot number.
|
|
*/
|
|
if(verify_grant(rp->p_endpoint, ANY, grant, bytes, 0, 0,
|
|
&offset, &granter) != OK) {
|
|
return 0;
|
|
}
|
|
|
|
if(!isokendpt(granter, &proc_nr)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Do the mapping from virtual to physical. */
|
|
return umap_local(proc_addr(proc_nr), D, offset, bytes);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* virtual_copy *
|
|
*===========================================================================*/
|
|
PUBLIC int virtual_copy(src_addr, dst_addr, bytes)
|
|
struct vir_addr *src_addr; /* source virtual address */
|
|
struct vir_addr *dst_addr; /* destination virtual address */
|
|
vir_bytes bytes; /* # of bytes to copy */
|
|
{
|
|
/* Copy bytes from virtual address src_addr to virtual address dst_addr.
|
|
* Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
|
|
*/
|
|
struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
|
phys_bytes phys_addr[2]; /* absolute source and destination */
|
|
int seg_index;
|
|
int i;
|
|
|
|
/* Check copy count. */
|
|
if (bytes <= 0) return(EDOM);
|
|
|
|
/* Do some more checks and map virtual addresses to physical addresses. */
|
|
vir_addr[_SRC_] = src_addr;
|
|
vir_addr[_DST_] = dst_addr;
|
|
for (i=_SRC_; i<=_DST_; i++) {
|
|
int proc_nr, type;
|
|
struct proc *p;
|
|
|
|
type = vir_addr[i]->segment & SEGMENT_TYPE;
|
|
if(type != PHYS_SEG && isokendpt(vir_addr[i]->proc_nr_e, &proc_nr))
|
|
p = proc_addr(proc_nr);
|
|
else
|
|
p = NULL;
|
|
|
|
/* Get physical address. */
|
|
switch(type) {
|
|
case LOCAL_SEG:
|
|
if(!p) return EDEADSRCDST;
|
|
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
|
phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset, bytes);
|
|
break;
|
|
case REMOTE_SEG:
|
|
if(!p) return EDEADSRCDST;
|
|
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
|
phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes);
|
|
break;
|
|
#if _MINIX_CHIP == _CHIP_INTEL
|
|
case BIOS_SEG:
|
|
if(!p) return EDEADSRCDST;
|
|
phys_addr[i] = umap_bios(p, vir_addr[i]->offset, bytes );
|
|
break;
|
|
#endif
|
|
case PHYS_SEG:
|
|
phys_addr[i] = vir_addr[i]->offset;
|
|
break;
|
|
case GRANT_SEG:
|
|
phys_addr[i] = umap_grant(p, vir_addr[i]->offset, bytes);
|
|
break;
|
|
default:
|
|
return(EINVAL);
|
|
}
|
|
|
|
/* Check if mapping succeeded. */
|
|
if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)
|
|
return(EFAULT);
|
|
}
|
|
|
|
/* Now copy bytes between physical addresseses. */
|
|
phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
|
|
return(OK);
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* clear_endpoint *
|
|
*===========================================================================*/
|
|
PUBLIC void clear_endpoint(rc)
|
|
register struct proc *rc; /* slot of process to clean up */
|
|
{
|
|
register struct proc *rp; /* iterate over process table */
|
|
register struct proc **xpp; /* iterate over caller queue */
|
|
|
|
if(isemptyp(rc)) panic("clear_proc: empty process", proc_nr(rc));
|
|
|
|
/* Make sure that the exiting process is no longer scheduled. */
|
|
RTS_LOCK_SET(rc, NO_ENDPOINT);
|
|
if (priv(rc)->s_flags & SYS_PROC)
|
|
{
|
|
if (priv(rc)->s_asynsize)
|
|
kprintf("clear_endpoint: clearing s_asynsize\n");
|
|
priv(rc)->s_asynsize= 0;
|
|
}
|
|
|
|
/* If the process happens to be queued trying to send a
|
|
* message, then it must be removed from the message queues.
|
|
*/
|
|
if (RTS_ISSET(rc, SENDING)) {
|
|
int target_proc;
|
|
|
|
okendpt(rc->p_sendto_e, &target_proc);
|
|
xpp = &proc_addr(target_proc)->p_caller_q; /* destination's queue */
|
|
while (*xpp != NIL_PROC) { /* check entire queue */
|
|
if (*xpp == rc) { /* process is on the queue */
|
|
*xpp = (*xpp)->p_q_link; /* replace by next process */
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("Proc %d removed from queue at %d\n",
|
|
proc_nr(rc), rc->p_sendto_e);
|
|
#endif
|
|
break; /* can only be queued once */
|
|
}
|
|
xpp = &(*xpp)->p_q_link; /* proceed to next queued */
|
|
}
|
|
rc->p_rts_flags &= ~SENDING;
|
|
}
|
|
rc->p_rts_flags &= ~RECEIVING;
|
|
|
|
/* Likewise, if another process was sending or receive a message to or from
|
|
* the exiting process, it must be alerted that process no longer is alive.
|
|
* Check all processes.
|
|
*/
|
|
for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) {
|
|
if(isemptyp(rp))
|
|
continue;
|
|
|
|
/* Unset pending notification bits. */
|
|
unset_sys_bit(priv(rp)->s_notify_pending, priv(rc)->s_id);
|
|
|
|
/* Check if process is receiving from exiting process. */
|
|
if (RTS_ISSET(rp, RECEIVING) && rp->p_getfrom_e == rc->p_endpoint) {
|
|
rp->p_reg.retreg = ESRCDIED; /* report source died */
|
|
RTS_LOCK_UNSET(rp, RECEIVING); /* no longer receiving */
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("Proc %d receive dead src %d\n", proc_nr(rp), proc_nr(rc));
|
|
#endif
|
|
}
|
|
if (RTS_ISSET(rp, SENDING) &&
|
|
rp->p_sendto_e == rc->p_endpoint) {
|
|
rp->p_reg.retreg = EDSTDIED; /* report destination died */
|
|
RTS_LOCK_UNSET(rp, SENDING);
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("Proc %d send dead dst %d\n", proc_nr(rp), proc_nr(rc));
|
|
#endif
|
|
}
|
|
}
|
|
}
|