minix/common/lib/libc/gen/rpst.c
Lionel Sambuc f14fb60209 Libraries updates and cleanup
* Updating common/lib
 * Updating lib/csu
 * Updating lib/libc
 * Updating libexec/ld.elf_so
 * Corrected test on __minix in featuretest to actually follow the
   meaning of the comment.
 * Cleaned up _REENTRANT-related defintions.
 * Disabled -D_REENTRANT for libfetch
 * Removing some unneeded __NBSD_LIBC defines and tests

Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
2013-01-14 11:36:26 +01:00

717 lines
16 KiB
C

/* $NetBSD: rpst.c,v 1.11 2011/04/26 20:53:34 yamt Exp $ */
/*-
* Copyright (c)2009 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* radix priority search tree
*
* described in:
* SIAM J. COMPUT.
* Vol. 14, No. 2, May 1985
* PRIORITY SEARCH TREES
* EDWARD M. McCREIGHT
*
* ideas from linux:
* - grow tree height on-demand.
* - allow duplicated X values. in that case, we act as a heap.
*/
#include <sys/cdefs.h>
#if defined(_KERNEL) || defined(_STANDALONE)
__KERNEL_RCSID(0, "$NetBSD: rpst.c,v 1.11 2011/04/26 20:53:34 yamt Exp $");
#include <sys/param.h>
#include <lib/libkern/libkern.h>
#if defined(_STANDALONE)
#include <lib/libsa/stand.h>
#endif /* defined(_STANDALONE) */
#else /* defined(_KERNEL) || defined(_STANDALONE) */
__RCSID("$NetBSD: rpst.c,v 1.11 2011/04/26 20:53:34 yamt Exp $");
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#if 1
#define KASSERT assert
#else
#define KASSERT(a)
#endif
#endif /* defined(_KERNEL) || defined(_STANDALONE) */
#include <sys/rpst.h>
/*
* rpst_init_tree: initialize a tree.
*/
void
rpst_init_tree(struct rpst_tree *t)
{
t->t_root = NULL;
t->t_height = 0;
}
/*
* rpst_height2max: calculate the maximum index which can be handled by
* a tree with the given height.
*
* 0 ... 0x0000000000000001
* 1 ... 0x0000000000000003
* 2 ... 0x0000000000000007
* 3 ... 0x000000000000000f
*
* 31 ... 0x00000000ffffffff
*
* 63 ... 0xffffffffffffffff
*/
static uint64_t
rpst_height2max(unsigned int height)
{
KASSERT(height < 64);
if (height == 63) {
return UINT64_MAX;
}
return (UINT64_C(1) << (height + 1)) - 1;
}
/*
* rpst_level2mask: calculate the mask for the given level in the tree.
*
* the mask used to index root's children is level 0.
*/
static uint64_t
rpst_level2mask(const struct rpst_tree *t, unsigned int level)
{
uint64_t mask;
if (t->t_height < level) {
mask = 0;
} else {
mask = UINT64_C(1) << (t->t_height - level);
}
return mask;
}
/*
* rpst_startmask: calculate the mask for the start of a search.
* (ie. the mask for the top-most bit)
*/
static uint64_t
rpst_startmask(const struct rpst_tree *t)
{
const uint64_t mask = rpst_level2mask(t, 0);
KASSERT((mask | (mask - 1)) == rpst_height2max(t->t_height));
return mask;
}
/*
* rpst_update_parents: update n_parent of children
*/
static inline void
rpst_update_parents(struct rpst_node *n)
{
int i;
for (i = 0; i < 2; i++) {
if (n->n_children[i] != NULL) {
n->n_children[i]->n_parent = n;
}
}
}
/*
* rpst_enlarge_tree: enlarge tree so that 'idx' can be stored
*/
static void
rpst_enlarge_tree(struct rpst_tree *t, uint64_t idx)
{
while (idx > rpst_height2max(t->t_height)) {
struct rpst_node *n = t->t_root;
if (n != NULL) {
rpst_remove_node(t, n);
memset(&n->n_children, 0, sizeof(n->n_children));
n->n_children[0] = t->t_root;
t->t_root->n_parent = n;
t->t_root = n;
n->n_parent = NULL;
}
t->t_height++;
}
}
/*
* rpst_insert_node1: a helper for rpst_insert_node.
*/
static struct rpst_node *
rpst_insert_node1(struct rpst_node **where, struct rpst_node *n, uint64_t mask)
{
struct rpst_node *parent;
struct rpst_node *cur;
unsigned int idx;
KASSERT((n->n_x & ((-mask) << 1)) == 0);
parent = NULL;
next:
cur = *where;
if (cur == NULL) {
n->n_parent = parent;
memset(&n->n_children, 0, sizeof(n->n_children));
*where = n;
return NULL;
}
KASSERT(cur->n_parent == parent);
if (n->n_y == cur->n_y && n->n_x == cur->n_x) {
return cur;
}
if (n->n_y < cur->n_y) {
/*
* swap cur and n.
* note that n is not in tree.
*/
memcpy(n->n_children, cur->n_children, sizeof(n->n_children));
n->n_parent = cur->n_parent;
rpst_update_parents(n);
*where = n;
n = cur;
cur = *where;
}
KASSERT(*where == cur);
idx = (n->n_x & mask) != 0;
where = &cur->n_children[idx];
parent = cur;
KASSERT((*where) == NULL || ((((*where)->n_x & mask) != 0) == idx));
KASSERT((*where) == NULL || (*where)->n_y >= cur->n_y);
mask >>= 1;
goto next;
}
/*
* rpst_insert_node: insert a node into the tree.
*
* => return NULL on success.
* => if a duplicated node (a node with the same X,Y pair as ours) is found,
* return the node. in that case, the tree is intact.
*/
struct rpst_node *
rpst_insert_node(struct rpst_tree *t, struct rpst_node *n)
{
rpst_enlarge_tree(t, n->n_x);
return rpst_insert_node1(&t->t_root, n, rpst_startmask(t));
}
/*
* rpst_find_pptr: find a pointer to the given node.
*
* also, return the parent node via parentp. (NULL for the root node.)
*/
static inline struct rpst_node **
rpst_find_pptr(struct rpst_tree *t, struct rpst_node *n,
struct rpst_node **parentp)
{
struct rpst_node * const parent = n->n_parent;
unsigned int i;
*parentp = parent;
if (parent == NULL) {
return &t->t_root;
}
for (i = 0; i < 2 - 1; i++) {
if (parent->n_children[i] == n) {
break;
}
}
KASSERT(parent->n_children[i] == n);
return &parent->n_children[i];
}
/*
* rpst_remove_node_at: remove a node at *where.
*/
static void
rpst_remove_node_at(struct rpst_node *parent, struct rpst_node **where,
struct rpst_node *cur)
{
struct rpst_node *tmp[2];
struct rpst_node *selected;
unsigned int selected_idx = 0; /* XXX gcc */
unsigned int i;
KASSERT(cur != NULL);
KASSERT(parent == cur->n_parent);
next:
selected = NULL;
for (i = 0; i < 2; i++) {
struct rpst_node *c;
c = cur->n_children[i];
KASSERT(c == NULL || c->n_parent == cur);
if (selected == NULL || (c != NULL && c->n_y < selected->n_y)) {
selected = c;
selected_idx = i;
}
}
/*
* now we have:
*
* parent
* \ <- where
* cur
* / \
* A selected
* / \
* B C
*/
*where = selected;
if (selected == NULL) {
return;
}
/*
* swap selected->n_children and cur->n_children.
*/
memcpy(tmp, selected->n_children, sizeof(tmp));
memcpy(selected->n_children, cur->n_children, sizeof(tmp));
memcpy(cur->n_children, tmp, sizeof(tmp));
rpst_update_parents(cur);
rpst_update_parents(selected);
selected->n_parent = parent;
/*
* parent
* \ <- where
* selected
* / \
* A selected
*
* cur
* / \
* B C
*/
where = &selected->n_children[selected_idx];
/*
* parent
* \
* selected
* / \ <- where
* A selected (*)
*
* cur (**)
* / \
* B C
*
* (*) this 'selected' will be overwritten in the next iteration.
* (**) cur->n_parent is bogus.
*/
parent = selected;
goto next;
}
/*
* rpst_remove_node: remove a node from the tree.
*/
void
rpst_remove_node(struct rpst_tree *t, struct rpst_node *n)
{
struct rpst_node *parent;
struct rpst_node **where;
where = rpst_find_pptr(t, n, &parent);
rpst_remove_node_at(parent, where, n);
}
static bool __unused
rpst_iterator_match_p(const struct rpst_node *n, const struct rpst_iterator *it)
{
if (n->n_y > it->it_max_y) {
return false;
}
if (n->n_x < it->it_min_x) {
return false;
}
if (n->n_x > it->it_max_x) {
return false;
}
return true;
}
struct rpst_node *
rpst_iterate_first(struct rpst_tree *t, uint64_t max_y, uint64_t min_x,
uint64_t max_x, struct rpst_iterator *it)
{
struct rpst_node *n;
KASSERT(min_x <= max_x);
n = t->t_root;
if (n == NULL || n->n_y > max_y) {
return NULL;
}
if (rpst_height2max(t->t_height) < min_x) {
return NULL;
}
it->it_tree = t;
it->it_cur = n;
it->it_idx = (min_x & rpst_startmask(t)) != 0;
it->it_level = 0;
it->it_max_y = max_y;
it->it_min_x = min_x;
it->it_max_x = max_x;
return rpst_iterate_next(it);
}
static inline unsigned int
rpst_node_on_edge_p(const struct rpst_node *n, uint64_t val, uint64_t mask)
{
return ((n->n_x ^ val) & ((-mask) << 1)) == 0;
}
static inline uint64_t
rpst_maxidx(const struct rpst_node *n, uint64_t max_x, uint64_t mask)
{
if (rpst_node_on_edge_p(n, max_x, mask)) {
return (max_x & mask) != 0;
} else {
return 1;
}
}
static inline uint64_t
rpst_minidx(const struct rpst_node *n, uint64_t min_x, uint64_t mask)
{
if (rpst_node_on_edge_p(n, min_x, mask)) {
return (min_x & mask) != 0;
} else {
return 0;
}
}
struct rpst_node *
rpst_iterate_next(struct rpst_iterator *it)
{
struct rpst_tree *t;
struct rpst_node *n;
struct rpst_node *next;
const uint64_t max_y = it->it_max_y;
const uint64_t min_x = it->it_min_x;
const uint64_t max_x = it->it_max_x;
unsigned int idx;
unsigned int maxidx;
unsigned int level;
uint64_t mask;
t = it->it_tree;
n = it->it_cur;
idx = it->it_idx;
level = it->it_level;
mask = rpst_level2mask(t, level);
maxidx = rpst_maxidx(n, max_x, mask);
KASSERT(n == t->t_root || rpst_iterator_match_p(n, it));
next:
KASSERT(mask == rpst_level2mask(t, level));
KASSERT(idx >= rpst_minidx(n, min_x, mask));
KASSERT(maxidx == rpst_maxidx(n, max_x, mask));
KASSERT(idx <= maxidx + 2);
KASSERT(n != NULL);
#if 0
printf("%s: cur=%p, idx=%u maxidx=%u level=%u mask=%" PRIx64 "\n",
__func__, (void *)n, idx, maxidx, level, mask);
#endif
if (idx == maxidx + 1) { /* visit the current node */
idx++;
if (min_x <= n->n_x && n->n_x <= max_x) {
it->it_cur = n;
it->it_idx = idx;
it->it_level = level;
KASSERT(rpst_iterator_match_p(n, it));
return n; /* report */
}
goto next;
} else if (idx == maxidx + 2) { /* back to the parent */
struct rpst_node **where;
where = rpst_find_pptr(t, n, &next);
if (next == NULL) {
KASSERT(level == 0);
KASSERT(t->t_root == n);
KASSERT(&t->t_root == where);
return NULL; /* done */
}
KASSERT(level > 0);
level--;
n = next;
mask = rpst_level2mask(t, level);
maxidx = rpst_maxidx(n, max_x, mask);
idx = where - n->n_children + 1;
KASSERT(idx < 2 + 1);
goto next;
}
/* go to a child */
KASSERT(idx < 2);
next = n->n_children[idx];
if (next == NULL || next->n_y > max_y) {
idx++;
goto next;
}
KASSERT(next->n_parent == n);
KASSERT(next->n_y >= n->n_y);
level++;
mask >>= 1;
n = next;
idx = rpst_minidx(n, min_x, mask);
maxidx = rpst_maxidx(n, max_x, mask);
#if 0
printf("%s: visit %p idx=%u level=%u mask=%llx\n",
__func__, n, idx, level, mask);
#endif
goto next;
}
#if defined(UNITTEST)
#include <sys/time.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
static void
rpst_dump_node(const struct rpst_node *n, unsigned int depth)
{
unsigned int i;
for (i = 0; i < depth; i++) {
printf(" ");
}
printf("[%u]", depth);
if (n == NULL) {
printf("NULL\n");
return;
}
printf("%p x=%" PRIx64 "(%" PRIu64 ") y=%" PRIx64 "(%" PRIu64 ")\n",
(const void *)n, n->n_x, n->n_x, n->n_y, n->n_y);
for (i = 0; i < 2; i++) {
rpst_dump_node(n->n_children[i], depth + 1);
}
}
static void
rpst_dump_tree(const struct rpst_tree *t)
{
printf("pst %p height=%u\n", (const void *)t, t->t_height);
rpst_dump_node(t->t_root, 0);
}
struct testnode {
struct rpst_node n;
struct testnode *next;
bool failed;
bool found;
};
struct rpst_tree t;
struct testnode *h = NULL;
static uintmax_t
tvdiff(const struct timeval *tv1, const struct timeval *tv2)
{
return (uintmax_t)tv1->tv_sec * 1000000 + tv1->tv_usec -
tv2->tv_sec * 1000000 - tv2->tv_usec;
}
static unsigned int
query(uint64_t max_y, uint64_t min_x, uint64_t max_x)
{
struct testnode *n;
struct rpst_node *rn;
struct rpst_iterator it;
struct timeval start;
struct timeval end;
unsigned int done;
printf("quering max_y=%" PRIu64 " min_x=%" PRIu64 " max_x=%" PRIu64
"\n",
max_y, min_x, max_x);
done = 0;
gettimeofday(&start, NULL);
for (rn = rpst_iterate_first(&t, max_y, min_x, max_x, &it);
rn != NULL;
rn = rpst_iterate_next(&it)) {
done++;
#if 0
printf("found %p x=%" PRIu64 " y=%" PRIu64 "\n",
(void *)rn, rn->n_x, rn->n_y);
#endif
n = (void *)rn;
assert(!n->found);
n->found = true;
}
gettimeofday(&end, NULL);
printf("%u nodes found in %ju usecs\n", done,
tvdiff(&end, &start));
gettimeofday(&start, NULL);
for (n = h; n != NULL; n = n->next) {
assert(n->failed ||
n->found == rpst_iterator_match_p(&n->n, &it));
n->found = false;
}
gettimeofday(&end, NULL);
printf("(linear search took %ju usecs)\n", tvdiff(&end, &start));
return done;
}
int
main(int argc, char *argv[])
{
struct testnode *n;
unsigned int i;
struct rpst_iterator it;
struct timeval start;
struct timeval end;
uint64_t min_y = UINT64_MAX;
uint64_t max_y = 0;
uint64_t min_x = UINT64_MAX;
uint64_t max_x = 0;
uint64_t w;
unsigned int done;
unsigned int fail;
unsigned int num = 500000;
rpst_init_tree(&t);
rpst_dump_tree(&t);
assert(NULL == rpst_iterate_first(&t, UINT64_MAX, 0, UINT64_MAX, &it));
for (i = 0; i < num; i++) {
n = malloc(sizeof(*n));
if (i > 499000) {
n->n.n_x = 10;
n->n.n_y = random();
} else if (i > 400000) {
n->n.n_x = i;
n->n.n_y = random();
} else {
n->n.n_x = random();
n->n.n_y = random();
}
if (n->n.n_y < min_y) {
min_y = n->n.n_y;
}
if (n->n.n_y > max_y) {
max_y = n->n.n_y;
}
if (n->n.n_x < min_x) {
min_x = n->n.n_x;
}
if (n->n.n_x > max_x) {
max_x = n->n.n_x;
}
n->found = false;
n->failed = false;
n->next = h;
h = n;
}
done = 0;
fail = 0;
gettimeofday(&start, NULL);
for (n = h; n != NULL; n = n->next) {
struct rpst_node *o;
#if 0
printf("insert %p x=%" PRIu64 " y=%" PRIu64 "\n",
n, n->n.n_x, n->n.n_y);
#endif
o = rpst_insert_node(&t, &n->n);
if (o == NULL) {
done++;
} else {
n->failed = true;
fail++;
}
}
gettimeofday(&end, NULL);
printf("%u nodes inserted and %u insertion failed in %ju usecs\n",
done, fail,
tvdiff(&end, &start));
assert(min_y == 0 || 0 == query(min_y - 1, 0, UINT64_MAX));
assert(max_x == UINT64_MAX ||
0 == query(UINT64_MAX, max_x + 1, UINT64_MAX));
assert(min_x == 0 || 0 == query(UINT64_MAX, 0, min_x - 1));
done = query(max_y, min_x, max_x);
assert(done == num - fail);
done = query(UINT64_MAX, 0, UINT64_MAX);
assert(done == num - fail);
w = max_x - min_x;
query(max_y / 2, min_x, max_x);
query(max_y, min_x + w / 2, max_x);
query(max_y / 2, min_x + w / 2, max_x);
query(max_y / 2, min_x, max_x - w / 2);
query(max_y / 2, min_x + w / 3, max_x - w / 3);
query(max_y - 1, min_x + 1, max_x - 1);
query(UINT64_MAX, 10, 10);
done = 0;
gettimeofday(&start, NULL);
for (n = h; n != NULL; n = n->next) {
if (n->failed) {
continue;
}
#if 0
printf("remove %p x=%" PRIu64 " y=%" PRIu64 "\n",
n, n->n.n_x, n->n.n_y);
#endif
rpst_remove_node(&t, &n->n);
done++;
}
gettimeofday(&end, NULL);
printf("%u nodes removed in %ju usecs\n", done,
tvdiff(&end, &start));
rpst_dump_tree(&t);
}
#endif /* defined(UNITTEST) */