457 lines
17 KiB
C
457 lines
17 KiB
C
/* This file contains the main program of the process manager and some related
|
|
* procedures. When MINIX starts up, the kernel runs for a little while,
|
|
* initializing itself and its tasks, and then it runs PM and FS. Both PM
|
|
* and FS initialize themselves as far as they can. PM asks the kernel for
|
|
* all free memory and starts serving requests.
|
|
*
|
|
* The entry points into this file are:
|
|
* main: starts PM running
|
|
* setreply: set the reply to be sent to process making an PM system call
|
|
*/
|
|
|
|
#include "pm.h"
|
|
#include <minix/keymap.h>
|
|
#include <minix/callnr.h>
|
|
#include <minix/com.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <fcntl.h>
|
|
#include <sys/resource.h>
|
|
#include <string.h>
|
|
#include "mproc.h"
|
|
#include "param.h"
|
|
|
|
#include "../../kernel/const.h"
|
|
#include "../../kernel/config.h"
|
|
#include "../../kernel/type.h"
|
|
#include "../../kernel/proc.h"
|
|
|
|
FORWARD _PROTOTYPE( void get_work, (void) );
|
|
FORWARD _PROTOTYPE( void pm_init, (void) );
|
|
FORWARD _PROTOTYPE( int get_nice_value, (int queue) );
|
|
FORWARD _PROTOTYPE( void get_mem_chunks, (struct memory *mem_chunks) );
|
|
FORWARD _PROTOTYPE( void patch_mem_chunks, (struct memory *mem_chunks,
|
|
struct mem_map *map_ptr) );
|
|
FORWARD _PROTOTYPE( void do_x86_vm, (struct memory mem_chunks[NR_MEMS]) );
|
|
|
|
#define click_to_round_k(n) \
|
|
((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
|
|
|
|
/*===========================================================================*
|
|
* main *
|
|
*===========================================================================*/
|
|
PUBLIC int main()
|
|
{
|
|
/* Main routine of the process manager. */
|
|
int result, s, proc_nr;
|
|
struct mproc *rmp;
|
|
sigset_t sigset;
|
|
|
|
pm_init(); /* initialize process manager tables */
|
|
|
|
/* This is PM's main loop- get work and do it, forever and forever. */
|
|
while (TRUE) {
|
|
get_work(); /* wait for an PM system call */
|
|
|
|
/* Check for system notifications first. Special cases. */
|
|
if (call_nr == SYN_ALARM) {
|
|
pm_expire_timers(m_in.NOTIFY_TIMESTAMP);
|
|
result = SUSPEND; /* don't reply */
|
|
} else if (call_nr == SYS_SIG) { /* signals pending */
|
|
sigset = m_in.NOTIFY_ARG;
|
|
if (sigismember(&sigset, SIGKSIG)) (void) ksig_pending();
|
|
result = SUSPEND; /* don't reply */
|
|
}
|
|
/* Else, if the system call number is valid, perform the call. */
|
|
else if ((unsigned) call_nr >= NCALLS) {
|
|
result = ENOSYS;
|
|
} else {
|
|
result = (*call_vec[call_nr])();
|
|
}
|
|
|
|
/* Send the results back to the user to indicate completion. */
|
|
if (result != SUSPEND) setreply(who, result);
|
|
|
|
swap_in(); /* maybe a process can be swapped in? */
|
|
|
|
/* Send out all pending reply messages, including the answer to
|
|
* the call just made above. The processes must not be swapped out.
|
|
*/
|
|
for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
|
|
/* In the meantime, the process may have been killed by a
|
|
* signal (e.g. if a lethal pending signal was unblocked)
|
|
* without the PM realizing it. If the slot is no longer in
|
|
* use or just a zombie, don't try to reply.
|
|
*/
|
|
if ((rmp->mp_flags & (REPLY | ONSWAP | IN_USE | ZOMBIE)) ==
|
|
(REPLY | IN_USE)) {
|
|
if ((s=send(proc_nr, &rmp->mp_reply)) != OK) {
|
|
panic(__FILE__,"PM can't reply to", proc_nr);
|
|
}
|
|
rmp->mp_flags &= ~REPLY;
|
|
}
|
|
}
|
|
}
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_work *
|
|
*===========================================================================*/
|
|
PRIVATE void get_work()
|
|
{
|
|
/* Wait for the next message and extract useful information from it. */
|
|
if (receive(ANY, &m_in) != OK) panic(__FILE__,"PM receive error", NO_NUM);
|
|
who = m_in.m_source; /* who sent the message */
|
|
call_nr = m_in.m_type; /* system call number */
|
|
|
|
/* Process slot of caller. Misuse PM's own process slot if the kernel is
|
|
* calling. This can happen in case of synchronous alarms (CLOCK) or or
|
|
* event like pending kernel signals (SYSTEM).
|
|
*/
|
|
mp = &mproc[who < 0 ? PM_PROC_NR : who];
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* setreply *
|
|
*===========================================================================*/
|
|
PUBLIC void setreply(proc_nr, result)
|
|
int proc_nr; /* process to reply to */
|
|
int result; /* result of call (usually OK or error #) */
|
|
{
|
|
/* Fill in a reply message to be sent later to a user process. System calls
|
|
* may occasionally fill in other fields, this is only for the main return
|
|
* value, and for setting the "must send reply" flag.
|
|
*/
|
|
register struct mproc *rmp = &mproc[proc_nr];
|
|
|
|
rmp->mp_reply.reply_res = result;
|
|
rmp->mp_flags |= REPLY; /* reply pending */
|
|
|
|
if (rmp->mp_flags & ONSWAP)
|
|
swap_inqueue(rmp); /* must swap this process back in */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pm_init *
|
|
*===========================================================================*/
|
|
PRIVATE void pm_init()
|
|
{
|
|
/* Initialize the process manager.
|
|
* Memory use info is collected from the boot monitor, the kernel, and
|
|
* all processes compiled into the system image. Initially this information
|
|
* is put into an array mem_chunks. Elements of mem_chunks are struct memory,
|
|
* and hold base, size pairs in units of clicks. This array is small, there
|
|
* should be no more than 8 chunks. After the array of chunks has been built
|
|
* the contents are used to initialize the hole list. Space for the hole list
|
|
* is reserved as an array with twice as many elements as the maximum number
|
|
* of processes allowed. It is managed as a linked list, and elements of the
|
|
* array are struct hole, which, in addition to storage for a base and size in
|
|
* click units also contain space for a link, a pointer to another element.
|
|
*/
|
|
int s;
|
|
static struct boot_image image[NR_BOOT_PROCS];
|
|
register struct boot_image *ip;
|
|
static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
|
|
SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 };
|
|
static char ign_sigs[] = { SIGCHLD, SIGWINCH };
|
|
static char mess_sigs[] = { SIGTERM, SIGHUP, SIGABRT, SIGQUIT };
|
|
register struct mproc *rmp;
|
|
register int i;
|
|
register char *sig_ptr;
|
|
phys_clicks total_clicks, minix_clicks, free_clicks;
|
|
message mess;
|
|
struct mem_map mem_map[NR_LOCAL_SEGS];
|
|
struct memory mem_chunks[NR_MEMS];
|
|
|
|
/* Initialize process table, including timers. */
|
|
for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) {
|
|
tmr_inittimer(&rmp->mp_timer);
|
|
}
|
|
|
|
/* Build the set of signals which cause core dumps, and the set of signals
|
|
* that are by default ignored.
|
|
*/
|
|
sigemptyset(&core_sset);
|
|
for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++)
|
|
sigaddset(&core_sset, *sig_ptr);
|
|
sigemptyset(&ign_sset);
|
|
for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++)
|
|
sigaddset(&ign_sset, *sig_ptr);
|
|
|
|
/* Obtain a copy of the boot monitor parameters and the kernel info struct.
|
|
* Parse the list of free memory chunks. This list is what the boot monitor
|
|
* reported, but it must be corrected for the kernel and system processes.
|
|
*/
|
|
if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK)
|
|
panic(__FILE__,"get monitor params failed",s);
|
|
get_mem_chunks(mem_chunks);
|
|
if ((s=sys_getkinfo(&kinfo)) != OK)
|
|
panic(__FILE__,"get kernel info failed",s);
|
|
|
|
/* Get the memory map of the kernel to see how much memory it uses. */
|
|
if ((s=get_mem_map(SYSTASK, mem_map)) != OK)
|
|
panic(__FILE__,"couldn't get memory map of SYSTASK",s);
|
|
minix_clicks = (mem_map[S].mem_phys+mem_map[S].mem_len)-mem_map[T].mem_phys;
|
|
patch_mem_chunks(mem_chunks, mem_map);
|
|
|
|
/* Initialize PM's process table. Request a copy of the system image table
|
|
* that is defined at the kernel level to see which slots to fill in.
|
|
*/
|
|
if (OK != (s=sys_getimage(image)))
|
|
panic(__FILE__,"couldn't get image table: %d\n", s);
|
|
procs_in_use = 0; /* start populating table */
|
|
printf("Building process table:"); /* show what's happening */
|
|
for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {
|
|
if (ip->proc_nr >= 0) { /* task have negative nrs */
|
|
procs_in_use += 1; /* found user process */
|
|
|
|
/* Set process details found in the image table. */
|
|
rmp = &mproc[ip->proc_nr];
|
|
strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN);
|
|
rmp->mp_parent = RS_PROC_NR;
|
|
rmp->mp_nice = get_nice_value(ip->priority);
|
|
sigemptyset(&rmp->mp_sig2mess);
|
|
sigemptyset(&rmp->mp_ignore);
|
|
sigemptyset(&rmp->mp_sigmask);
|
|
sigemptyset(&rmp->mp_catch);
|
|
if (ip->proc_nr == INIT_PROC_NR) { /* user process */
|
|
rmp->mp_pid = INIT_PID;
|
|
rmp->mp_flags |= IN_USE;
|
|
}
|
|
else { /* system process */
|
|
rmp->mp_pid = get_free_pid();
|
|
rmp->mp_flags |= IN_USE | DONT_SWAP | PRIV_PROC;
|
|
#if DEAD_CODE
|
|
for (sig_ptr = mess_sigs;
|
|
sig_ptr < mess_sigs+sizeof(mess_sigs);
|
|
sig_ptr++)
|
|
sigaddset(&rmp->mp_sig2mess, *sig_ptr);
|
|
#endif
|
|
}
|
|
|
|
/* Get memory map for this process from the kernel. */
|
|
if ((s=get_mem_map(ip->proc_nr, rmp->mp_seg)) != OK)
|
|
panic(__FILE__,"couldn't get process entry",s);
|
|
if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE;
|
|
minix_clicks += rmp->mp_seg[S].mem_phys +
|
|
rmp->mp_seg[S].mem_len - rmp->mp_seg[T].mem_phys;
|
|
patch_mem_chunks(mem_chunks, rmp->mp_seg);
|
|
|
|
/* Tell FS about this system process. */
|
|
mess.PR_PROC_NR = ip->proc_nr;
|
|
mess.PR_PID = rmp->mp_pid;
|
|
if (OK != (s=send(FS_PROC_NR, &mess)))
|
|
panic(__FILE__,"can't sync up with FS", s);
|
|
printf(" %s", ip->proc_name); /* display process name */
|
|
}
|
|
}
|
|
printf(".\n"); /* last process done */
|
|
|
|
/* Override some details. INIT, PM, FS and RS are somewhat special. */
|
|
mproc[PM_PROC_NR].mp_pid = PM_PID; /* PM has magic pid */
|
|
mproc[RS_PROC_NR].mp_parent = INIT_PROC_NR; /* INIT is root */
|
|
sigfillset(&mproc[PM_PROC_NR].mp_ignore); /* guard against signals */
|
|
sigfillset(&mproc[FS_PROC_NR].mp_sig2mess); /* forward signals */
|
|
sigfillset(&mproc[TTY_PROC_NR].mp_sig2mess); /* forward signals */
|
|
|
|
/* Tell FS that no more system processes follow and synchronize. */
|
|
mess.PR_PROC_NR = NONE;
|
|
if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK)
|
|
panic(__FILE__,"can't sync up with FS", NO_NUM);
|
|
|
|
#if ENABLE_BOOTDEV
|
|
/* Possibly we must correct the memory chunks for the boot device. */
|
|
if (kinfo.bootdev_size > 0) {
|
|
mem_map[T].mem_phys = kinfo.bootdev_base >> CLICK_SHIFT;
|
|
mem_map[T].mem_len = 0;
|
|
mem_map[D].mem_len = (kinfo.bootdev_size+CLICK_SIZE-1) >> CLICK_SHIFT;
|
|
patch_mem_chunks(mem_chunks, mem_map);
|
|
}
|
|
#endif /* ENABLE_BOOTDEV */
|
|
|
|
/* Withhold some memory from x86 VM */
|
|
do_x86_vm(mem_chunks);
|
|
|
|
/* Initialize tables to all physical memory and print memory information. */
|
|
printf("Physical memory:");
|
|
mem_init(mem_chunks, &free_clicks);
|
|
total_clicks = minix_clicks + free_clicks;
|
|
printf(" total %u KB,", click_to_round_k(total_clicks));
|
|
printf(" system %u KB,", click_to_round_k(minix_clicks));
|
|
printf(" free %u KB.\n", click_to_round_k(free_clicks));
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_nice_value *
|
|
*===========================================================================*/
|
|
PRIVATE int get_nice_value(queue)
|
|
int queue; /* store mem chunks here */
|
|
{
|
|
/* Processes in the boot image have a priority assigned. The PM doesn't know
|
|
* about priorities, but uses 'nice' values instead. The priority is between
|
|
* MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX.
|
|
*/
|
|
int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) /
|
|
(MIN_USER_Q-MAX_USER_Q+1);
|
|
if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen */
|
|
if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn't happen */
|
|
return nice_val;
|
|
}
|
|
|
|
#if _WORD_SIZE == 2
|
|
/* In real mode only 1M can be addressed, and in 16-bit protected we can go
|
|
* no further than we can count in clicks. (The 286 is further limited by
|
|
* its 24 bit address bus, but we can assume in that case that no more than
|
|
* 16M memory is reported by the BIOS.)
|
|
*/
|
|
#define MAX_REAL 0x00100000L
|
|
#define MAX_16BIT (0xFFF0L << CLICK_SHIFT)
|
|
#endif
|
|
|
|
/*===========================================================================*
|
|
* get_mem_chunks *
|
|
*===========================================================================*/
|
|
PRIVATE void get_mem_chunks(mem_chunks)
|
|
struct memory *mem_chunks; /* store mem chunks here */
|
|
{
|
|
/* Initialize the free memory list from the 'memory' boot variable. Translate
|
|
* the byte offsets and sizes in this list to clicks, properly truncated. Also
|
|
* make sure that we don't exceed the maximum address space of the 286 or the
|
|
* 8086, i.e. when running in 16-bit protected mode or real mode.
|
|
*/
|
|
long base, size, limit;
|
|
char *s, *end; /* use to parse boot variable */
|
|
int i, done = 0;
|
|
struct memory *memp;
|
|
#if _WORD_SIZE == 2
|
|
unsigned long max_address;
|
|
struct machine machine;
|
|
if (OK != (i=sys_getmachine(&machine)))
|
|
panic(__FILE__, "sys_getmachine failed", i);
|
|
#endif
|
|
|
|
/* Initialize everything to zero. */
|
|
for (i = 0; i < NR_MEMS; i++) {
|
|
memp = &mem_chunks[i]; /* next mem chunk is stored here */
|
|
memp->base = memp->size = 0;
|
|
}
|
|
|
|
/* The available memory is determined by MINIX' boot loader as a list of
|
|
* (base:size)-pairs in boothead.s. The 'memory' boot variable is set in
|
|
* in boot.s. The format is "b0:s0,b1:s1,b2:s2", where b0:s0 is low mem,
|
|
* b1:s1 is mem between 1M and 16M, b2:s2 is mem above 16M. Pairs b1:s1
|
|
* and b2:s2 are combined if the memory is adjacent.
|
|
*/
|
|
s = find_param("memory"); /* get memory boot variable */
|
|
for (i = 0; i < NR_MEMS && !done; i++) {
|
|
memp = &mem_chunks[i]; /* next mem chunk is stored here */
|
|
base = size = 0; /* initialize next base:size pair */
|
|
if (*s != 0) { /* get fresh data, unless at end */
|
|
|
|
/* Read fresh base and expect colon as next char. */
|
|
base = strtoul(s, &end, 0x10); /* get number */
|
|
if (end != s && *end == ':') s = ++end; /* skip ':' */
|
|
else *s=0; /* terminate, should not happen */
|
|
|
|
/* Read fresh size and expect comma or assume end. */
|
|
size = strtoul(s, &end, 0x10); /* get number */
|
|
if (end != s && *end == ',') s = ++end; /* skip ',' */
|
|
else done = 1;
|
|
}
|
|
limit = base + size;
|
|
#if _WORD_SIZE == 2
|
|
max_address = machine.protected ? MAX_16BIT : MAX_REAL;
|
|
if (limit > max_address) limit = max_address;
|
|
#endif
|
|
base = (base + CLICK_SIZE-1) & ~(long)(CLICK_SIZE-1);
|
|
limit &= ~(long)(CLICK_SIZE-1);
|
|
if (limit <= base) continue;
|
|
memp->base = base >> CLICK_SHIFT;
|
|
memp->size = (limit - base) >> CLICK_SHIFT;
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* patch_mem_chunks *
|
|
*===========================================================================*/
|
|
PRIVATE void patch_mem_chunks(mem_chunks, map_ptr)
|
|
struct memory *mem_chunks; /* store mem chunks here */
|
|
struct mem_map *map_ptr; /* memory to remove */
|
|
{
|
|
/* Remove server memory from the free memory list. The boot monitor
|
|
* promises to put processes at the start of memory chunks. The
|
|
* tasks all use same base address, so only the first task changes
|
|
* the memory lists. The servers and init have their own memory
|
|
* spaces and their memory will be removed from the list.
|
|
*/
|
|
struct memory *memp;
|
|
for (memp = mem_chunks; memp < &mem_chunks[NR_MEMS]; memp++) {
|
|
if (memp->base == map_ptr[T].mem_phys) {
|
|
memp->base += map_ptr[T].mem_len + map_ptr[D].mem_len;
|
|
memp->size -= map_ptr[T].mem_len + map_ptr[D].mem_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define PAGE_SIZE 4096
|
|
#define PAGE_TABLE_COVER (1024*PAGE_SIZE)
|
|
/*=========================================================================*
|
|
* do_x86_vm *
|
|
*=========================================================================*/
|
|
PRIVATE void do_x86_vm(mem_chunks)
|
|
struct memory mem_chunks[NR_MEMS];
|
|
{
|
|
phys_bytes high, bytes;
|
|
phys_clicks clicks, base_click;
|
|
unsigned pages;
|
|
int i, r;
|
|
|
|
/* Compute the highest memory location */
|
|
high= 0;
|
|
for (i= 0; i<NR_MEMS; i++)
|
|
{
|
|
if (mem_chunks[i].size == 0)
|
|
continue;
|
|
if (mem_chunks[i].base + mem_chunks[i].size > high)
|
|
high= mem_chunks[i].base + mem_chunks[i].size;
|
|
}
|
|
|
|
high <<= CLICK_SHIFT;
|
|
#if VERBOSE_VM
|
|
printf("do_x86_vm: found high 0x%x\n", high);
|
|
#endif
|
|
|
|
/* The number of pages we need is one for the page directory, enough
|
|
* page tables to cover the memory, and one page for alignement.
|
|
*/
|
|
pages= 1 + (high + PAGE_TABLE_COVER-1)/PAGE_TABLE_COVER + 1;
|
|
bytes= pages*PAGE_SIZE;
|
|
clicks= (bytes + CLICK_SIZE-1) >> CLICK_SHIFT;
|
|
|
|
#if VERBOSE_VM
|
|
printf("do_x86_vm: need %d pages\n", pages);
|
|
printf("do_x86_vm: need %d bytes\n", bytes);
|
|
printf("do_x86_vm: need %d clicks\n", clicks);
|
|
#endif
|
|
|
|
for (i= 0; i<NR_MEMS; i++)
|
|
{
|
|
if (mem_chunks[i].size <= clicks)
|
|
continue;
|
|
break;
|
|
}
|
|
if (i >= NR_MEMS)
|
|
panic("PM", "not enough memory for VM page tables?", NO_NUM);
|
|
base_click= mem_chunks[i].base;
|
|
mem_chunks[i].base += clicks;
|
|
mem_chunks[i].size -= clicks;
|
|
|
|
#if VERBOSE_VM
|
|
printf("do_x86_vm: using 0x%x clicks @ 0x%x\n", clicks, base_click);
|
|
#endif
|
|
r= sys_vm_setbuf(base_click << CLICK_SHIFT, clicks << CLICK_SHIFT,
|
|
high);
|
|
if (r != 0)
|
|
printf("do_x86_vm: sys_vm_setbuf failed: %d\n", r);
|
|
}
|