minix/kernel/arch/earm/memory.c
Thomas Veerman db8c1ee9d0 ARM: provide free running clock to replace ccnt
The Cycle CouNTer on ARM cannot be used reliably as it wraps around
rather quickly and can be altered by user space (on Minix). Furthermore,
it's buggy when wrapping and is not implemented at all on the Linaro
Beagleboard emulator.

This patch programs GPTIMER10 as a free running clock at 1.625 MHz (it
doesn't generate interrupts). It's memory mapped into every process,
which enables libsys to provide micro_delay().

Change-Id: Iba004c6c62976762fe154ea390d69e518eec1531
2013-01-31 15:19:11 +00:00

790 lines
22 KiB
C

#include "kernel/kernel.h"
#include "kernel/proc.h"
#include "kernel/vm.h"
#include <machine/vm.h>
#include <minix/type.h>
#include <minix/syslib.h>
#include <minix/cpufeature.h>
#include <string.h>
#include <assert.h>
#include <signal.h>
#include <stdlib.h>
#include <machine/vm.h>
#include "arch_proto.h"
#include "kernel/proto.h"
#include "kernel/debug.h"
#include "omap_timer.h"
phys_bytes device_mem_vaddr = 0;
#define HASPT(procptr) ((procptr)->p_seg.p_ttbr != 0)
static int nfreepdes = 0;
#define MAXFREEPDES 2
static int freepdes[MAXFREEPDES];
static u32_t phys_get32(phys_bytes v);
void mem_clear_mapcache(void)
{
int i;
for(i = 0; i < nfreepdes; i++) {
struct proc *ptproc = get_cpulocal_var(ptproc);
int pde = freepdes[i];
u32_t *ptv;
assert(ptproc);
ptv = ptproc->p_seg.p_ttbr_v;
assert(ptv);
ptv[pde] = 0;
}
}
/* This function sets up a mapping from within the kernel's address
* space to any other area of memory, either straight physical
* memory (pr == NULL) or a process view of memory, in 1MB windows.
* I.e., it maps in 1MB chunks of virtual (or physical) address space
* to 1MB chunks of kernel virtual address space.
*
* It recognizes pr already being in memory as a special case (no
* mapping required).
*
* The target (i.e. in-kernel) mapping area is one of the freepdes[]
* VM has earlier already told the kernel about that is available. It is
* identified as the 'pde' parameter. This value can be chosen freely
* by the caller, as long as it is in range (i.e. 0 or higher and corresonds
* to a known freepde slot). It is up to the caller to keep track of which
* freepde's are in use, and to determine which ones are free to use.
*
* The logical number supplied by the caller is translated into an actual
* pde number to be used, and a pointer to it (linear address) is returned
* for actual use by phys_copy or memset.
*/
static phys_bytes createpde(
const struct proc *pr, /* Requested process, NULL for physical. */
const phys_bytes linaddr,/* Address after segment translation. */
phys_bytes *bytes, /* Size of chunk, function may truncate it. */
int free_pde_idx, /* index of the free slot to use */
int *changed /* If mapping is made, this is set to 1. */
)
{
u32_t pdeval;
phys_bytes offset;
int pde;
assert(free_pde_idx >= 0 && free_pde_idx < nfreepdes);
pde = freepdes[free_pde_idx];
assert(pde >= 0 && pde < 4096);
if(pr && ((pr == get_cpulocal_var(ptproc)) || iskernelp(pr))) {
/* Process memory is requested, and
* it's a process that is already in current page table, or
* the kernel, which is always there.
* Therefore linaddr is valid directly, with the requested
* size.
*/
return linaddr;
}
if(pr) {
/* Requested address is in a process that is not currently
* accessible directly. Grab the PDE entry of that process'
* page table that corresponds to the requested address.
*/
assert(pr->p_seg.p_ttbr_v);
pdeval = pr->p_seg.p_ttbr_v[ARM_VM_PDE(linaddr)];
} else {
/* Requested address is physical. Make up the PDE entry. */
pdeval = (linaddr & ARM_VM_SECTION_MASK) |
ARM_VM_SECTION |
ARM_VM_SECTION_DOMAIN | ARM_VM_SECTION_USER;
}
/* Write the pde value that we need into a pde that the kernel
* can access, into the currently loaded page table so it becomes
* visible.
*/
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
if(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] != pdeval) {
get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] = pdeval;
*changed = 1;
}
/* Memory is now available, but only the 1MB window of virtual
* address space that we have mapped; calculate how much of
* the requested range is visible and return that in *bytes,
* if that is less than the requested range.
*/
offset = linaddr & ARM_VM_OFFSET_MASK_1MB; /* Offset in 1MB window. */
*bytes = MIN(*bytes, ARM_BIG_PAGE_SIZE - offset);
/* Return the linear address of the start of the new mapping. */
return ARM_BIG_PAGE_SIZE*pde + offset;
}
/*===========================================================================*
* check_resumed_caller *
*===========================================================================*/
static int check_resumed_caller(struct proc *caller)
{
/* Returns the result from VM if caller was resumed, otherwise OK. */
if (caller && (caller->p_misc_flags & MF_KCALL_RESUME)) {
assert(caller->p_vmrequest.vmresult != VMSUSPEND);
return caller->p_vmrequest.vmresult;
}
return OK;
}
/*===========================================================================*
* lin_lin_copy *
*===========================================================================*/
static int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr,
struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes)
{
u32_t addr;
proc_nr_t procslot;
assert(get_cpulocal_var(ptproc));
assert(get_cpulocal_var(proc_ptr));
assert(read_ttbr0() == get_cpulocal_var(ptproc)->p_seg.p_ttbr);
procslot = get_cpulocal_var(ptproc)->p_nr;
assert(procslot >= 0 && procslot < ARM_VM_DIR_ENTRIES);
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_VMINHIBIT));
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_VMINHIBIT));
while(bytes > 0) {
phys_bytes srcptr, dstptr;
vir_bytes chunk = bytes;
int changed = 0;
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
if (srcproc && GET_BIT(srcproc->p_stale_tlb, cpu)) {
changed = 1;
UNSET_BIT(srcproc->p_stale_tlb, cpu);
}
if (dstproc && GET_BIT(dstproc->p_stale_tlb, cpu)) {
changed = 1;
UNSET_BIT(dstproc->p_stale_tlb, cpu);
}
#endif
/* Set up 1MB ranges. */
srcptr = createpde(srcproc, srclinaddr, &chunk, 0, &changed);
dstptr = createpde(dstproc, dstlinaddr, &chunk, 1, &changed);
if(changed) {
reload_ttbr0();
refresh_tlb();
}
/* Copy pages. */
PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr);
if(addr) {
/* If addr is nonzero, a page fault was caught. */
if(addr >= srcptr && addr < (srcptr + chunk)) {
return EFAULT_SRC;
}
if(addr >= dstptr && addr < (dstptr + chunk)) {
return EFAULT_DST;
}
panic("lin_lin_copy fault out of range");
/* Not reached. */
return EFAULT;
}
/* Update counter and addresses for next iteration, if any. */
bytes -= chunk;
srclinaddr += chunk;
dstlinaddr += chunk;
}
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
return OK;
}
static u32_t phys_get32(phys_bytes addr)
{
const u32_t v;
int r;
if((r=lin_lin_copy(NULL, addr,
proc_addr(SYSTEM), (phys_bytes) &v, sizeof(v))) != OK) {
panic("lin_lin_copy for phys_get32 failed: %d", r);
}
return v;
}
/*===========================================================================*
* umap_virtual *
*===========================================================================*/
phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
register struct proc *rp; /* pointer to proc table entry for process */
int seg; /* T, D, or S segment */
vir_bytes vir_addr; /* virtual address in bytes within the seg */
vir_bytes bytes; /* # of bytes to be copied */
{
phys_bytes phys = 0;
if(vm_lookup(rp, vir_addr, &phys, NULL) != OK) {
printf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%x: 0x%lx failed\n", rp->p_name, seg, vir_addr);
phys = 0;
} else {
if(phys == 0)
panic("vm_lookup returned phys: %d", phys);
}
if(phys == 0) {
printf("SYSTEM:umap_virtual: lookup failed\n");
return 0;
}
/* Now make sure addresses are contiguous in physical memory
* so that the umap makes sense.
*/
if(bytes > 0 && vm_lookup_range(rp, vir_addr, NULL, bytes) != bytes) {
printf("umap_virtual: %s: %lu at 0x%lx (vir 0x%lx) not contiguous\n",
rp->p_name, bytes, vir_addr, vir_addr);
return 0;
}
/* phys must be larger than 0 (or the caller will think the call
* failed), and address must not cross a page boundary.
*/
assert(phys);
return phys;
}
/*===========================================================================*
* vm_lookup *
*===========================================================================*/
int vm_lookup(const struct proc *proc, const vir_bytes virtual,
phys_bytes *physical, u32_t *ptent)
{
u32_t *root, *pt;
int pde, pte;
u32_t pde_v, pte_v;
assert(proc);
assert(physical);
assert(!isemptyp(proc));
assert(HASPT(proc));
/* Retrieve page directory entry. */
root = (u32_t *) proc->p_seg.p_ttbr;
assert(!((u32_t) root % ARM_PAGEDIR_SIZE));
pde = ARM_VM_PDE(virtual);
assert(pde >= 0 && pde < ARM_VM_DIR_ENTRIES);
pde_v = phys_get32((u32_t) (root + pde));
if(!(pde_v & ARM_VM_PDE_PRESENT)) {
return EFAULT;
}
/* We don't expect to ever see this. */
if(pde_v & ARM_VM_BIGPAGE) {
*physical = pde_v & ARM_VM_SECTION_MASK;
if(ptent) *ptent = pde_v;
*physical += virtual & ARM_VM_OFFSET_MASK_1MB;
} else {
/* Retrieve page table entry. */
pt = (u32_t *) (pde_v & ARM_VM_PDE_MASK);
assert(!((u32_t) pt % ARM_PAGETABLE_SIZE));
pte = ARM_VM_PTE(virtual);
assert(pte >= 0 && pte < ARM_VM_PT_ENTRIES);
pte_v = phys_get32((u32_t) (pt + pte));
if(!(pte_v & ARM_VM_PTE_PRESENT)) {
return EFAULT;
}
if(ptent) *ptent = pte_v;
/* Actual address now known; retrieve it and add page offset. */
*physical = pte_v & ARM_VM_PTE_MASK;
*physical += virtual % ARM_PAGE_SIZE;
}
return OK;
}
/*===========================================================================*
* vm_lookup_range *
*===========================================================================*/
size_t vm_lookup_range(const struct proc *proc, vir_bytes vir_addr,
phys_bytes *phys_addr, size_t bytes)
{
/* Look up the physical address corresponding to linear virtual address
* 'vir_addr' for process 'proc'. Return the size of the range covered
* by contiguous physical memory starting from that address; this may
* be anywhere between 0 and 'bytes' inclusive. If the return value is
* nonzero, and 'phys_addr' is non-NULL, 'phys_addr' will be set to the
* base physical address of the range. 'vir_addr' and 'bytes' need not
* be page-aligned, but the caller must have verified that the given
* linear range is valid for the given process at all.
*/
phys_bytes phys, next_phys;
size_t len;
assert(proc);
assert(bytes > 0);
assert(HASPT(proc));
/* Look up the first page. */
if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
return 0;
if (phys_addr != NULL)
*phys_addr = phys;
len = ARM_PAGE_SIZE - (vir_addr % ARM_PAGE_SIZE);
vir_addr += len;
next_phys = phys + len;
/* Look up any next pages and test physical contiguity. */
while (len < bytes) {
if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
break;
if (next_phys != phys)
break;
len += ARM_PAGE_SIZE;
vir_addr += ARM_PAGE_SIZE;
next_phys += ARM_PAGE_SIZE;
}
/* We might now have overshot the requested length somewhat. */
return MIN(bytes, len);
}
/*===========================================================================*
* vm_suspend *
*===========================================================================*/
static void vm_suspend(struct proc *caller, const struct proc *target,
const vir_bytes linaddr, const vir_bytes len, const int type)
{
/* This range is not OK for this process. Set parameters
* of the request and notify VM about the pending request.
*/
assert(!RTS_ISSET(caller, RTS_VMREQUEST));
assert(!RTS_ISSET(target, RTS_VMREQUEST));
RTS_SET(caller, RTS_VMREQUEST);
caller->p_vmrequest.req_type = VMPTYPE_CHECK;
caller->p_vmrequest.target = target->p_endpoint;
caller->p_vmrequest.params.check.start = linaddr;
caller->p_vmrequest.params.check.length = len;
caller->p_vmrequest.params.check.writeflag = 1;
caller->p_vmrequest.type = type;
/* Connect caller on vmrequest wait queue. */
if(!(caller->p_vmrequest.nextrequestor = vmrequest))
if(OK != send_sig(VM_PROC_NR, SIGKMEM))
panic("send_sig failed");
vmrequest = caller;
}
/*===========================================================================*
* vm_check_range *
*===========================================================================*/
int vm_check_range(struct proc *caller, struct proc *target,
vir_bytes vir_addr, size_t bytes)
{
/* Public interface to vm_suspend(), for use by kernel calls. On behalf
* of 'caller', call into VM to check linear virtual address range of
* process 'target', starting at 'vir_addr', for 'bytes' bytes. This
* function assumes that it will called twice if VM returned an error
* the first time (since nothing has changed in that case), and will
* then return the error code resulting from the first call. Upon the
* first call, a non-success error code is returned as well.
*/
int r;
if ((caller->p_misc_flags & MF_KCALL_RESUME) &&
(r = caller->p_vmrequest.vmresult) != OK)
return r;
vm_suspend(caller, target, vir_addr, bytes, VMSTYPE_KERNELCALL);
return VMSUSPEND;
}
/*===========================================================================*
* delivermsg *
*===========================================================================*/
void delivermsg(struct proc *rp)
{
int r = OK;
assert(rp->p_misc_flags & MF_DELIVERMSG);
assert(rp->p_delivermsg.m_source != NONE);
if (copy_msg_to_user(&rp->p_delivermsg,
(message *) rp->p_delivermsg_vir)) {
printf("WARNING wrong user pointer 0x%08lx from "
"process %s / %d\n",
rp->p_delivermsg_vir,
rp->p_name,
rp->p_endpoint);
r = EFAULT;
}
/* Indicate message has been delivered; address is 'used'. */
rp->p_delivermsg.m_source = NONE;
rp->p_misc_flags &= ~MF_DELIVERMSG;
if(!(rp->p_misc_flags & MF_CONTEXT_SET)) {
rp->p_reg.retreg = r;
}
}
/*===========================================================================*
* vmmemset *
*===========================================================================*/
int vm_memset(struct proc* caller, endpoint_t who, phys_bytes ph, int c,
phys_bytes count)
{
u32_t pattern;
struct proc *whoptr = NULL;
phys_bytes cur_ph = ph;
phys_bytes left = count;
phys_bytes ptr, chunk, pfa = 0;
int new_ttbr, r = OK;
if ((r = check_resumed_caller(caller)) != OK)
return r;
/* NONE for physical, otherwise virtual */
if (who != NONE && !(whoptr = endpoint_lookup(who)))
return ESRCH;
c &= 0xFF;
pattern = c | (c << 8) | (c << 16) | (c << 24);
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
assert(!catch_pagefaults);
catch_pagefaults = 1;
/* We can memset as many bytes as we have remaining,
* or as many as remain in the 1MB chunk we mapped in.
*/
while (left > 0) {
new_ttbr = 0;
chunk = left;
ptr = createpde(whoptr, cur_ph, &chunk, 0, &new_ttbr);
if (new_ttbr) {
reload_ttbr0();
refresh_tlb();
}
/* If a page fault happens, pfa is non-null */
if ((pfa = phys_memset(ptr, pattern, chunk))) {
/* If a process pagefaults, VM may help out */
if (whoptr) {
vm_suspend(caller, whoptr, ph, count,
VMSTYPE_KERNELCALL);
assert(catch_pagefaults);
catch_pagefaults = 0;
return VMSUSPEND;
}
/* Pagefault when phys copying ?! */
panic("vm_memset: pf %lx addr=%lx len=%lu\n",
pfa , ptr, chunk);
}
cur_ph += chunk;
left -= chunk;
}
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
assert(catch_pagefaults);
catch_pagefaults = 0;
return OK;
}
/*===========================================================================*
* virtual_copy_f *
*===========================================================================*/
int virtual_copy_f(caller, src_addr, dst_addr, bytes, vmcheck)
struct proc * caller;
struct vir_addr *src_addr; /* source virtual address */
struct vir_addr *dst_addr; /* destination virtual address */
vir_bytes bytes; /* # of bytes to copy */
int vmcheck; /* if nonzero, can return VMSUSPEND */
{
/* Copy bytes from virtual address src_addr to virtual address dst_addr. */
struct vir_addr *vir_addr[2]; /* virtual source and destination address */
int i, r;
struct proc *procs[2];
assert((vmcheck && caller) || (!vmcheck && !caller));
/* Check copy count. */
if (bytes <= 0) return(EDOM);
/* Do some more checks and map virtual addresses to physical addresses. */
vir_addr[_SRC_] = src_addr;
vir_addr[_DST_] = dst_addr;
for (i=_SRC_; i<=_DST_; i++) {
endpoint_t proc_e = vir_addr[i]->proc_nr_e;
int proc_nr;
struct proc *p;
if(proc_e == NONE) {
p = NULL;
} else {
if(!isokendpt(proc_e, &proc_nr)) {
printf("virtual_copy: no reasonable endpoint\n");
return ESRCH;
}
p = proc_addr(proc_nr);
}
procs[i] = p;
}
if ((r = check_resumed_caller(caller)) != OK)
return r;
if((r=lin_lin_copy(procs[_SRC_], vir_addr[_SRC_]->offset,
procs[_DST_], vir_addr[_DST_]->offset, bytes)) != OK) {
struct proc *target = NULL;
phys_bytes lin;
if(r != EFAULT_SRC && r != EFAULT_DST)
panic("lin_lin_copy failed: %d", r);
if(!vmcheck || !caller) {
return r;
}
if(r == EFAULT_SRC) {
lin = vir_addr[_SRC_]->offset;
target = procs[_SRC_];
} else if(r == EFAULT_DST) {
lin = vir_addr[_DST_]->offset;
target = procs[_DST_];
} else {
panic("r strange: %d", r);
}
assert(caller);
assert(target);
vm_suspend(caller, target, lin, bytes, VMSTYPE_KERNELCALL);
return VMSUSPEND;
}
return OK;
}
/*===========================================================================*
* data_copy *
*===========================================================================*/
int data_copy(const endpoint_t from_proc, const vir_bytes from_addr,
const endpoint_t to_proc, const vir_bytes to_addr,
size_t bytes)
{
struct vir_addr src, dst;
src.offset = from_addr;
dst.offset = to_addr;
src.proc_nr_e = from_proc;
dst.proc_nr_e = to_proc;
assert(src.proc_nr_e != NONE);
assert(dst.proc_nr_e != NONE);
return virtual_copy(&src, &dst, bytes);
}
/*===========================================================================*
* data_copy_vmcheck *
*===========================================================================*/
int data_copy_vmcheck(struct proc * caller,
const endpoint_t from_proc, const vir_bytes from_addr,
const endpoint_t to_proc, const vir_bytes to_addr,
size_t bytes)
{
struct vir_addr src, dst;
src.offset = from_addr;
dst.offset = to_addr;
src.proc_nr_e = from_proc;
dst.proc_nr_e = to_proc;
assert(src.proc_nr_e != NONE);
assert(dst.proc_nr_e != NONE);
return virtual_copy_vmcheck(caller, &src, &dst, bytes);
}
void memory_init(void)
{
assert(nfreepdes == 0);
freepdes[nfreepdes++] = kinfo.freepde_start++;
freepdes[nfreepdes++] = kinfo.freepde_start++;
assert(kinfo.freepde_start < ARM_VM_DIR_ENTRIES);
assert(nfreepdes == 2);
assert(nfreepdes <= MAXFREEPDES);
}
/*===========================================================================*
* arch_proc_init *
*===========================================================================*/
void arch_proc_init(struct proc *pr, const u32_t ip, const u32_t sp, char *name)
{
arch_proc_reset(pr);
strcpy(pr->p_name, name);
/* set custom state we know */
pr->p_reg.pc = ip;
pr->p_reg.sp = sp;
}
static int device_mem_mapping_index = -1,
frclock_index = -1,
usermapped_glo_index = -1,
usermapped_index = -1, first_um_idx = -1;
char *device_mem;
extern char usermapped_start, usermapped_end, usermapped_nonglo_start;
int arch_phys_map(const int index,
phys_bytes *addr,
phys_bytes *len,
int *flags)
{
static int first = 1;
int freeidx = 0;
u32_t glo_len = (u32_t) &usermapped_nonglo_start -
(u32_t) &usermapped_start;
if(first) {
memset(&minix_kerninfo, 0, sizeof(minix_kerninfo));
device_mem_mapping_index = freeidx++;
frclock_index = freeidx++;
if(glo_len > 0) {
usermapped_glo_index = freeidx++;
}
usermapped_index = freeidx++;
first_um_idx = usermapped_index;
if(usermapped_glo_index != -1)
first_um_idx = usermapped_glo_index;
first = 0;
}
if(index == usermapped_glo_index) {
*addr = vir2phys(&usermapped_start);
*len = glo_len;
*flags = VMMF_USER | VMMF_GLO;
return OK;
}
else if(index == usermapped_index) {
*addr = vir2phys(&usermapped_nonglo_start);
*len = (u32_t) &usermapped_end -
(u32_t) &usermapped_nonglo_start;
*flags = VMMF_USER;
return OK;
}
else if (index == device_mem_mapping_index) {
/* map device memory */
*addr = 0x48000000;
*len = 0x02000000;
*flags = VMMF_UNCACHED | VMMF_WRITE;
return OK;
}
else if (index == frclock_index) {
*addr = OMAP3_GPTIMER10_BASE;
*len = ARM_PAGE_SIZE;
*flags = VMMF_USER;
return OK;
}
return EINVAL;
}
int arch_phys_map_reply(const int index, const vir_bytes addr)
{
if(index == first_um_idx) {
u32_t usermapped_offset;
assert(addr > (u32_t) &usermapped_start);
usermapped_offset = addr - (u32_t) &usermapped_start;
#define FIXEDPTR(ptr) (void *) ((u32_t)ptr + usermapped_offset)
#define FIXPTR(ptr) ptr = FIXEDPTR(ptr)
#define ASSIGN(minixstruct) minix_kerninfo.minixstruct = FIXEDPTR(&minixstruct)
ASSIGN(kinfo);
ASSIGN(machine);
ASSIGN(kmessages);
ASSIGN(loadinfo);
/* adjust the pointers of the functions and the struct
* itself to the user-accessible mapping
*/
minix_kerninfo.kerninfo_magic = KERNINFO_MAGIC;
minix_kerninfo.minix_feature_flags = minix_feature_flags;
minix_kerninfo_user = (vir_bytes) FIXEDPTR(&minix_kerninfo);
return OK;
}
if (index == usermapped_index) {
return OK;
}
else if (index == device_mem_mapping_index) {
device_mem_vaddr = addr;
return OK;
}
else if (index == frclock_index) {
minix_kerninfo.minix_frclock = addr;
return OK;
}
return EINVAL;
}
int arch_enable_paging(struct proc * caller)
{
assert(caller->p_seg.p_ttbr);
/* load caller's page table */
switch_address_space(caller);
device_mem = (char *) device_mem_vaddr;
return OK;
}
void release_address_space(struct proc *pr)
{
pr->p_seg.p_ttbr_v = NULL;
refresh_tlb();
}