minix/kernel/arch/i386/memory.c
Ben Gras 6f77685609 Split of architecture-dependent and -independent functions for i386,
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.

 . kernel does not program the interrupt controller directly, do any
   other architecture-dependent operations, or contain assembly any more,
   but uses architecture-dependent functions in arch/$(ARCH)/.
 . architecture-dependent constants and types defined in arch/$(ARCH)/include.
 . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
   architecture-independent functions.
 . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
   and live in arch/i386/do_* now.
 . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
   gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
   If 86 support is to return, it should be a new architecture.
 . prototypes for the architecture-dependent functions defined in
   kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
 . /etc/make.conf included in makefiles and shell scripts that need to
   know the building architecture; it defines ARCH=<arch>, currently only
   i386.
 . some basic per-architecture build support outside of the kernel (lib)
 . in clock.c, only dequeue a process if it was ready
 . fixes for new include files

files deleted:
 . mpx/klib.s - only for choosing between mpx/klib86 and -386
 . klib86.s - only for 86

i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
 . mpx386.s (entry point)
 . klib386.s
 . sconst.h
 . exception.c
 . protect.c
 . protect.h
 . i8269.c
2006-12-22 15:22:27 +00:00

235 lines
6.1 KiB
C

#include "../../kernel.h"
#include "../../proc.h"
#include <minix/type.h>
#include <string.h>
#include <sys/vm.h>
#include <minix/portio.h>
#include "proto.h"
/* VM functions and data. */
PRIVATE int vm_needs_init= 1;
PRIVATE u32_t vm_cr3;
FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value) );
FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr) );
FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value) );
FORWARD _PROTOTYPE( void set_cr3, (void) );
FORWARD _PROTOTYPE( void vm_enable_paging, (void) );
/* *** Internal VM Functions *** */
PUBLIC void vm_init(void)
{
int o;
phys_bytes p, pt_size;
phys_bytes vm_dir_base, vm_pt_base, phys_mem;
u32_t entry;
unsigned pages;
if (!vm_size)
panic("i386_vm_init: no space for page tables", NO_NUM);
/* Align page directory */
o= (vm_base % PAGE_SIZE);
if (o != 0)
o= PAGE_SIZE-o;
vm_dir_base= vm_base+o;
/* Page tables start after the page directory */
vm_pt_base= vm_dir_base+PAGE_SIZE;
pt_size= (vm_base+vm_size)-vm_pt_base;
pt_size -= (pt_size % PAGE_SIZE);
/* Compute the number of pages based on vm_mem_high */
pages= (vm_mem_high-1)/PAGE_SIZE + 1;
if (pages * I386_VM_PT_ENT_SIZE > pt_size)
panic("i386_vm_init: page table too small", NO_NUM);
for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++)
{
phys_mem= p*PAGE_SIZE;
entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
I386_VM_PRESENT;
if (phys_mem >= vm_mem_high)
entry= 0;
phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry);
}
for (p= 0; p < I386_VM_DIR_ENTRIES; p++)
{
phys_mem= vm_pt_base + p*PAGE_SIZE;
entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
I386_VM_PRESENT;
if (phys_mem >= vm_pt_base + pt_size)
entry= 0;
phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry);
}
vm_set_cr3(vm_dir_base);
level0(vm_enable_paging);
}
PRIVATE void phys_put32(addr, value)
phys_bytes addr;
u32_t value;
{
phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value));
}
PRIVATE u32_t phys_get32(addr)
phys_bytes addr;
{
u32_t value;
phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value));
return value;
}
PRIVATE void vm_set_cr3(value)
u32_t value;
{
vm_cr3= value;
level0(set_cr3);
}
PRIVATE void set_cr3()
{
write_cr3(vm_cr3);
}
PRIVATE void vm_enable_paging(void)
{
u32_t cr0;
cr0= read_cr0();
write_cr0(cr0 | I386_CR0_PG);
}
PUBLIC void vm_map_range(base, size, offset)
u32_t base;
u32_t size;
u32_t offset;
{
u32_t curr_pt, curr_pt_addr, entry;
int dir_ent, pt_ent;
if (base % PAGE_SIZE != 0)
panic("map_range: bad base", base);
if (size % PAGE_SIZE != 0)
panic("map_range: bad size", size);
if (offset % PAGE_SIZE != 0)
panic("map_range: bad offset", offset);
curr_pt= -1;
curr_pt_addr= 0;
while (size != 0)
{
dir_ent= (base >> I386_VM_DIR_ENT_SHIFT);
pt_ent= (base >> I386_VM_PT_ENT_SHIFT) & I386_VM_PT_ENT_MASK;
if (dir_ent != curr_pt)
{
/* Get address of page table */
curr_pt= dir_ent;
curr_pt_addr= phys_get32(vm_cr3 +
dir_ent * I386_VM_PT_ENT_SIZE);
curr_pt_addr &= I386_VM_ADDR_MASK;
}
entry= offset | I386_VM_USER | I386_VM_WRITE |
I386_VM_PRESENT;
#if 0 /* Do we need this for memory mapped I/O? */
entry |= I386_VM_PCD | I386_VM_PWT;
#endif
phys_put32(curr_pt_addr + pt_ent * I386_VM_PT_ENT_SIZE, entry);
offset += PAGE_SIZE;
base += PAGE_SIZE;
size -= PAGE_SIZE;
}
/* reload root of page table. */
vm_set_cr3(vm_cr3);
}
PUBLIC vir_bytes alloc_remote_segment(u32_t *selector,
segframe_t *segments, int index, phys_bytes phys, vir_bytes size,
int priv)
{
phys_bytes offset = 0;
/* Check if the segment size can be recorded in bytes, that is, check
* if descriptor's limit field can delimited the allowed memory region
* precisely. This works up to 1MB. If the size is larger, 4K pages
* instead of bytes are used.
*/
if (size < BYTE_GRAN_MAX) {
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
phys, size, priv);
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
offset = 0;
} else {
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
phys & ~0xFFFF, 0, priv);
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
offset = phys & 0xFFFF;
}
return offset;
}
PUBLIC phys_bytes umap_remote(struct proc* rp, int seg,
vir_bytes vir_addr, vir_bytes bytes)
{
/* Calculate the physical memory address for a given virtual address. */
struct far_mem *fm;
if (bytes <= 0) return( (phys_bytes) 0);
if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
fm = &rp->p_priv->s_farmem[seg];
if (! fm->in_use) return( (phys_bytes) 0);
if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
return(fm->mem_phys + (phys_bytes) vir_addr);
}
/*===========================================================================*
* umap_local *
*===========================================================================*/
PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
register struct proc *rp; /* pointer to proc table entry for process */
int seg; /* T, D, or S segment */
vir_bytes vir_addr; /* virtual address in bytes within the seg */
vir_bytes bytes; /* # of bytes to be copied */
{
/* Calculate the physical memory address for a given virtual address. */
vir_clicks vc; /* the virtual address in clicks */
phys_bytes pa; /* intermediate variables as phys_bytes */
phys_bytes seg_base;
if (bytes <= 0) return( (phys_bytes) 0);
if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
if (seg != T)
seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
if (vc >= rp->p_memmap[seg].mem_vir +
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
pa = (phys_bytes) vir_addr;
pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
return(seg_base + pa);
}