minix/minix/lib/libminixfs/cache.c
David van Moolenbroek d75faf18d9 libminixfs: add support for memory-mapped holes
When VM asks a file system to provide a block to satisfy a page fault
on a file memory mapping, the file system previously had no way to
inform VM that the block is a hole, since there is no corresponding
block on the underlying device.  To work around this, MFS and ext2
would actually allocate a block for the hole when asked by VM, which
not only defeats the point of holes in the first place, but also does
not work on read-only file systems.  With this patch, a new libminixfs
call allows the file system to inform VM about holes.  This issue does
raise the question as to whether the VM cache is using the right data
structures, since there are now two places where we have to fake a
device offset.  This will have to be revisited in the future.

The patch changes file systems accordingly, and adds a test to test74.

Change-Id: Ib537d56b3f30a8eb05bc1f63c92b5c7428d18f4c
2015-08-13 13:46:48 +00:00

1065 lines
30 KiB
C

#define _SYSTEM
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdlib.h>
#include <machine/vmparam.h>
#include <sys/param.h>
#include <sys/mman.h>
#include <minix/dmap.h>
#include <minix/libminixfs.h>
#include <minix/syslib.h>
#include <minix/sysutil.h>
#include <minix/u64.h>
#include <minix/bdev.h>
#define BUFHASH(b) ((unsigned int)((b) % nr_bufs))
#define MARKCLEAN lmfs_markclean
#define MINBUFS 6 /* minimal no of bufs for sanity check */
static struct buf *front; /* points to least recently used free block */
static struct buf *rear; /* points to most recently used free block */
static unsigned int bufs_in_use;/* # bufs currently in use (not on free list)*/
static void rm_lru(struct buf *bp);
static void read_block(struct buf *);
static void freeblock(struct buf *bp);
static void cache_heuristic_check(int major);
static int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
static struct buf *buf;
static struct buf **buf_hash; /* the buffer hash table */
static unsigned int nr_bufs;
static int may_use_vmcache;
static size_t fs_block_size = PAGE_SIZE; /* raw i/o block size */
static int rdwt_err;
static int quiet = 0;
void lmfs_setquiet(int q) { quiet = q; }
static u32_t fs_bufs_heuristic(int minbufs, u32_t btotal, u64_t bfree,
int blocksize, dev_t majordev)
{
struct vm_stats_info vsi;
int bufs;
u32_t kbytes_used_fs, kbytes_total_fs, kbcache, kb_fsmax;
u32_t kbytes_remain_mem;
u64_t bused;
bused = btotal-bfree;
/* set a reasonable cache size; cache at most a certain
* portion of the used FS, and at most a certain %age of remaining
* memory
*/
if(vm_info_stats(&vsi) != OK) {
bufs = 1024;
if(!quiet)
printf("fslib: heuristic info fail: default to %d bufs\n", bufs);
return bufs;
}
/* remaining free memory is unused memory plus memory in used for cache,
* as the cache can be evicted
*/
kbytes_remain_mem = (u64_t)(vsi.vsi_free + vsi.vsi_cached) *
vsi.vsi_pagesize / 1024;
/* check fs usage. */
kbytes_used_fs = (unsigned long)(((u64_t)bused * blocksize) / 1024);
kbytes_total_fs = (unsigned long)(((u64_t)btotal * blocksize) / 1024);
/* heuristic for a desired cache size based on FS usage;
* but never bigger than half of the total filesystem
*/
kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
/* heuristic for a maximum usage - 10% of remaining memory */
kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
bufs = kbcache * 1024 / blocksize;
/* but we simply need MINBUFS no matter what */
if(bufs < minbufs)
bufs = minbufs;
return bufs;
}
void lmfs_blockschange(dev_t dev, int delta)
{
/* Change the number of allocated blocks by 'delta.'
* Also accumulate the delta since the last cache re-evaluation.
* If it is outside a certain band, ask the cache library to
* re-evaluate the cache size.
*/
static int bitdelta = 0;
bitdelta += delta;
#define BANDKB (10*1024) /* recheck cache every 10MB change */
if(bitdelta*(int)fs_block_size/1024 > BANDKB ||
bitdelta*(int)fs_block_size/1024 < -BANDKB) {
lmfs_cache_reevaluate(dev);
bitdelta = 0;
}
}
void lmfs_markdirty(struct buf *bp)
{
bp->lmfs_flags |= VMMC_DIRTY;
}
void lmfs_markclean(struct buf *bp)
{
bp->lmfs_flags &= ~VMMC_DIRTY;
}
int lmfs_isclean(struct buf *bp)
{
return !(bp->lmfs_flags & VMMC_DIRTY);
}
dev_t lmfs_dev(struct buf *bp)
{
return bp->lmfs_dev;
}
int lmfs_bytes(struct buf *bp)
{
return bp->lmfs_bytes;
}
static void free_unused_blocks(void)
{
struct buf *bp;
int freed = 0, bytes = 0;
printf("libminixfs: freeing; %d blocks in use\n", bufs_in_use);
for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
if(bp->lmfs_bytes > 0 && bp->lmfs_count == 0) {
freed++;
bytes += bp->lmfs_bytes;
freeblock(bp);
}
}
printf("libminixfs: freeing; %d blocks, %d bytes\n", freed, bytes);
}
static void lmfs_alloc_block(struct buf *bp)
{
int len;
ASSERT(!bp->data);
ASSERT(bp->lmfs_bytes == 0);
len = roundup(fs_block_size, PAGE_SIZE);
if((bp->data = mmap(0, fs_block_size,
PROT_READ|PROT_WRITE, MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
free_unused_blocks();
if((bp->data = mmap(0, fs_block_size, PROT_READ|PROT_WRITE,
MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
panic("libminixfs: could not allocate block");
}
}
assert(bp->data);
bp->lmfs_bytes = fs_block_size;
bp->lmfs_needsetcache = 1;
}
/*===========================================================================*
* lmfs_get_block *
*===========================================================================*/
struct buf *lmfs_get_block(dev_t dev, block64_t block, int only_search)
{
return lmfs_get_block_ino(dev, block, only_search, VMC_NO_INODE, 0);
}
static void munmap_t(void *a, int len)
{
vir_bytes av = (vir_bytes) a;
assert(a);
assert(a != MAP_FAILED);
assert(len > 0);
assert(!(av % PAGE_SIZE));
len = roundup(len, PAGE_SIZE);
assert(!(len % PAGE_SIZE));
if(munmap(a, len) < 0)
panic("libminixfs cache: munmap failed");
}
static void raisecount(struct buf *bp)
{
assert(bufs_in_use >= 0);
ASSERT(bp->lmfs_count >= 0);
bp->lmfs_count++;
if(bp->lmfs_count == 1) bufs_in_use++;
assert(bufs_in_use > 0);
}
static void lowercount(struct buf *bp)
{
assert(bufs_in_use > 0);
ASSERT(bp->lmfs_count > 0);
bp->lmfs_count--;
if(bp->lmfs_count == 0) bufs_in_use--;
assert(bufs_in_use >= 0);
}
static void freeblock(struct buf *bp)
{
ASSERT(bp->lmfs_count == 0);
/* If the block taken is dirty, make it clean by writing it to the disk.
* Avoid hysteresis by flushing all other dirty blocks for the same device.
*/
if (bp->lmfs_dev != NO_DEV) {
if (!lmfs_isclean(bp)) lmfs_flushdev(bp->lmfs_dev);
assert(bp->lmfs_bytes == fs_block_size);
bp->lmfs_dev = NO_DEV;
}
/* Fill in block's parameters and add it to the hash chain where it goes. */
MARKCLEAN(bp); /* NO_DEV blocks may be marked dirty */
if(bp->lmfs_bytes > 0) {
assert(bp->data);
munmap_t(bp->data, bp->lmfs_bytes);
bp->lmfs_bytes = 0;
bp->data = NULL;
} else assert(!bp->data);
}
/*===========================================================================*
* find_block *
*===========================================================================*/
static struct buf *find_block(dev_t dev, block64_t block)
{
/* Search the hash chain for (dev, block). Return the buffer structure if
* found, or NULL otherwise.
*/
struct buf *bp;
int b;
assert(dev != NO_DEV);
b = BUFHASH(block);
for (bp = buf_hash[b]; bp != NULL; bp = bp->lmfs_hash)
if (bp->lmfs_blocknr == block && bp->lmfs_dev == dev)
return bp;
return NULL;
}
/*===========================================================================*
* lmfs_get_block_ino *
*===========================================================================*/
struct buf *lmfs_get_block_ino(dev_t dev, block64_t block, int only_search,
ino_t ino, u64_t ino_off)
{
/* Check to see if the requested block is in the block cache. If so, return
* a pointer to it. If not, evict some other block and fetch it (unless
* 'only_search' is 1). All the blocks in the cache that are not in use
* are linked together in a chain, with 'front' pointing to the least recently
* used block and 'rear' to the most recently used block. If 'only_search' is
* 1, the block being requested will be overwritten in its entirety, so it is
* only necessary to see if it is in the cache; if it is not, any free buffer
* will do. It is not necessary to actually read the block in from disk.
* If 'only_search' is PREFETCH, the block need not be read from the disk,
* and the device is not to be marked on the block, so callers can tell if
* the block returned is valid.
* In addition to the LRU chain, there is also a hash chain to link together
* blocks whose block numbers end with the same bit strings, for fast lookup.
*/
int b;
static struct buf *bp;
uint64_t dev_off;
struct buf *prev_ptr;
assert(buf_hash);
assert(buf);
assert(nr_bufs > 0);
ASSERT(fs_block_size > 0);
assert(dev != NO_DEV);
assert(block <= UINT64_MAX / fs_block_size);
dev_off = block * fs_block_size;
if((ino_off % fs_block_size)) {
printf("cache: unaligned lmfs_get_block_ino ino_off %llu\n",
ino_off);
util_stacktrace();
}
/* See if the block is in the cache. If so, we can return it right away. */
bp = find_block(dev, block);
if (bp != NULL && !(bp->lmfs_flags & VMMC_EVICTED)) {
/* Block needed has been found. */
if (bp->lmfs_count == 0) {
rm_lru(bp);
ASSERT(bp->lmfs_needsetcache == 0);
ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
/* FIXME: race condition against the VMMC_EVICTED check */
bp->lmfs_flags |= VMMC_BLOCK_LOCKED;
}
raisecount(bp);
ASSERT(bp->lmfs_bytes == fs_block_size);
ASSERT(bp->lmfs_dev == dev);
ASSERT(bp->lmfs_dev != NO_DEV);
ASSERT(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
ASSERT(bp->data);
if(ino != VMC_NO_INODE) {
if(bp->lmfs_inode == VMC_NO_INODE
|| bp->lmfs_inode != ino
|| bp->lmfs_inode_offset != ino_off) {
bp->lmfs_inode = ino;
bp->lmfs_inode_offset = ino_off;
bp->lmfs_needsetcache = 1;
}
}
return(bp);
}
/* We had the block in the cache but VM evicted it; invalidate it. */
if (bp != NULL) {
assert(bp->lmfs_flags & VMMC_EVICTED);
ASSERT(bp->lmfs_count == 0);
ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
ASSERT(!(bp->lmfs_flags & VMMC_DIRTY));
bp->lmfs_dev = NO_DEV;
bp->lmfs_bytes = 0;
bp->data = NULL;
}
/* Desired block is not on available chain. Find a free block to use. */
if(bp) {
ASSERT(bp->lmfs_flags & VMMC_EVICTED);
} else {
if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
}
assert(bp);
rm_lru(bp);
/* Remove the block that was just taken from its hash chain. */
b = BUFHASH(bp->lmfs_blocknr);
prev_ptr = buf_hash[b];
if (prev_ptr == bp) {
buf_hash[b] = bp->lmfs_hash;
} else {
/* The block just taken is not on the front of its hash chain. */
while (prev_ptr->lmfs_hash != NULL)
if (prev_ptr->lmfs_hash == bp) {
prev_ptr->lmfs_hash = bp->lmfs_hash; /* found it */
break;
} else {
prev_ptr = prev_ptr->lmfs_hash; /* keep looking */
}
}
freeblock(bp);
bp->lmfs_inode = ino;
bp->lmfs_inode_offset = ino_off;
bp->lmfs_flags = VMMC_BLOCK_LOCKED;
bp->lmfs_needsetcache = 0;
bp->lmfs_dev = dev; /* fill in device number */
bp->lmfs_blocknr = block; /* fill in block number */
ASSERT(bp->lmfs_count == 0);
raisecount(bp);
b = BUFHASH(bp->lmfs_blocknr);
bp->lmfs_hash = buf_hash[b];
buf_hash[b] = bp; /* add to hash list */
assert(dev != NO_DEV);
/* Block is not found in our cache, but we do want it
* if it's in the vm cache.
*/
assert(!bp->data);
assert(!bp->lmfs_bytes);
if(vmcache) {
if((bp->data = vm_map_cacheblock(dev, dev_off, ino, ino_off,
&bp->lmfs_flags, fs_block_size)) != MAP_FAILED) {
bp->lmfs_bytes = fs_block_size;
ASSERT(!bp->lmfs_needsetcache);
return bp;
}
}
bp->data = NULL;
/* Not in the cache; reserve memory for its contents. */
lmfs_alloc_block(bp);
assert(bp->data);
if(only_search == PREFETCH) {
/* PREFETCH: don't do i/o. */
bp->lmfs_dev = NO_DEV;
} else if (only_search == NORMAL) {
read_block(bp);
} else if(only_search == NO_READ) {
/* This block will be overwritten by new contents. */
} else
panic("unexpected only_search value: %d", only_search);
assert(bp->data);
return(bp); /* return the newly acquired block */
}
/*===========================================================================*
* lmfs_put_block *
*===========================================================================*/
void lmfs_put_block(
struct buf *bp, /* pointer to the buffer to be released */
int block_type /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
)
{
/* Return a block to the list of available blocks. Depending on 'block_type'
* it may be put on the front or rear of the LRU chain. Blocks that are
* expected to be needed again shortly (e.g., partially full data blocks)
* go on the rear; blocks that are unlikely to be needed again shortly
* (e.g., full data blocks) go on the front. Blocks whose loss can hurt
* the integrity of the file system (e.g., inode blocks) are written to
* disk immediately if they are dirty.
*/
dev_t dev;
uint64_t dev_off;
int r, setflags;
if (bp == NULL) return; /* it is easier to check here than in caller */
dev = bp->lmfs_dev;
dev_off = bp->lmfs_blocknr * fs_block_size;
lowercount(bp);
if (bp->lmfs_count != 0) return; /* block is still in use */
/* Put this block back on the LRU chain. */
if (dev == NO_DEV || dev == DEV_RAM || (block_type & ONE_SHOT)) {
/* Block probably won't be needed quickly. Put it on front of chain.
* It will be the next block to be evicted from the cache.
*/
bp->lmfs_prev = NULL;
bp->lmfs_next = front;
if (front == NULL)
rear = bp; /* LRU chain was empty */
else
front->lmfs_prev = bp;
front = bp;
}
else {
/* Block probably will be needed quickly. Put it on rear of chain.
* It will not be evicted from the cache for a long time.
*/
bp->lmfs_prev = rear;
bp->lmfs_next = NULL;
if (rear == NULL)
front = bp;
else
rear->lmfs_next = bp;
rear = bp;
}
assert(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
bp->lmfs_flags &= ~VMMC_BLOCK_LOCKED;
/* block has sensible content - if necesary, identify it to VM */
if(vmcache && bp->lmfs_needsetcache && dev != NO_DEV) {
setflags = (block_type & ONE_SHOT) ? VMSF_ONCE : 0;
if ((r = vm_set_cacheblock(bp->data, dev, dev_off, bp->lmfs_inode,
bp->lmfs_inode_offset, &bp->lmfs_flags, fs_block_size,
setflags)) != OK) {
if(r == ENOSYS) {
printf("libminixfs: ENOSYS, disabling VM calls\n");
vmcache = 0;
} else {
panic("libminixfs: setblock of %p dev 0x%llx off "
"0x%llx failed\n", bp->data, dev, dev_off);
}
}
}
bp->lmfs_needsetcache = 0;
/* Now that we (may) have given the block to VM, invalidate the block if it
* is a one-shot block. Otherwise, it may still be reobtained immediately
* after, which could be a problem if VM already forgot the block and we are
* expected to pass it to VM again, which then wouldn't happen.
*/
if (block_type & ONE_SHOT)
bp->lmfs_dev = NO_DEV;
}
/*===========================================================================*
* lmfs_free_block *
*===========================================================================*/
void lmfs_free_block(dev_t dev, block64_t block)
{
/* The file system has just freed the given block. The block may previously
* have been in use as data block for an inode. Therefore, we now need to tell
* VM that the block is no longer associated with an inode. If we fail to do so
* and the inode now has a hole at this location, mapping in the hole would
* yield the old block contents rather than a zeroed page. In addition, if the
* block is in the cache, it will be removed, even if it was dirty.
*/
struct buf *bp;
int r;
/* Tell VM to forget about the block. The primary purpose of this call is to
* break the inode association, but since the block is part of a mounted file
* system, it is not expected to be accessed directly anyway. So, save some
* cache memory by throwing it out of the VM cache altogether.
*/
if (vmcache) {
if ((r = vm_forget_cacheblock(dev, block * fs_block_size,
fs_block_size)) != OK)
printf("libminixfs: vm_forget_cacheblock failed (%d)\n", r);
}
if ((bp = find_block(dev, block)) != NULL) {
lmfs_markclean(bp);
/* Invalidate the block. The block may or may not be in use right now,
* so don't be smart about freeing memory or repositioning in the LRU.
*/
bp->lmfs_dev = NO_DEV;
}
/* Note that this is *not* the right place to implement TRIM support. Even
* though the block is freed, on the device it may still be part of a
* previous checkpoint or snapshot of some sort. Only the file system can
* be trusted to decide which blocks can be reused on the device!
*/
}
/*===========================================================================*
* lmfs_zero_block_ino *
*===========================================================================*/
void lmfs_zero_block_ino(dev_t dev, ino_t ino, u64_t ino_off)
{
/* Files may have holes. From an application perspective, these are just file
* regions filled with zeroes. From a file system perspective however, holes
* may represent unallocated regions on disk. Thus, these holes do not have
* corresponding blocks on the disk, and therefore also no block number.
* Therefore, we cannot simply use lmfs_get_block_ino() for them. For reads,
* this is not a problem, since the file system can just zero out the target
* application buffer instead. For mapped pages however, this *is* a problem,
* since the VM cache needs to be told about the corresponding block, and VM
* does not accept blocks without a device offset. The role of this function is
* therefore to tell VM about the hole using a fake device offset. The device
* offsets are picked so that the VM cache will see a block memory-mapped for
* the hole in the file, while the same block is not visible when
* memory-mapping the block device.
*/
struct buf *bp;
static block64_t fake_block = 0;
if (!vmcache)
return;
assert(fs_block_size > 0);
/* Pick a block number which is above the threshold of what can possibly be
* mapped in by mmap'ing the device, since off_t is signed, and it is safe to
* say that it will take a while before we have 8-exabyte devices. Pick a
* different block number each time to avoid possible concurrency issues.
* FIXME: it does not seem like VM actually verifies mmap offsets though..
*/
if (fake_block == 0 || ++fake_block >= UINT64_MAX / fs_block_size)
fake_block = ((uint64_t)INT64_MAX + 1) / fs_block_size;
/* Obtain a block. */
bp = lmfs_get_block_ino(dev, fake_block, NO_READ, ino, ino_off);
assert(bp != NULL);
assert(bp->lmfs_dev != NO_DEV);
/* The block is already zeroed, as it has just been allocated with mmap. File
* systems do not rely on this assumption yet, so if VM ever gets changed to
* not clear the blocks we allocate (e.g., by recycling pages in the VM cache
* for the same process, which would be safe), we need to add a memset here.
*/
/* Release the block. We don't expect it to be accessed ever again. Moreover,
* if we keep the block around in the VM cache, it may erroneously be mapped
* in beyond the file end later. Hence, use VMSF_ONCE when passing it to VM.
* TODO: tell VM that it is an all-zeroes block, so that VM can deduplicate
* all such pages in its cache.
*/
lmfs_put_block(bp, ONE_SHOT);
}
void lmfs_cache_reevaluate(dev_t dev)
{
if(bufs_in_use == 0 && dev != NO_DEV) {
/* if the cache isn't in use any more, we could resize it. */
cache_heuristic_check(major(dev));
}
}
/*===========================================================================*
* read_block *
*===========================================================================*/
static void read_block(
struct buf *bp /* buffer pointer */
)
{
/* Read or write a disk block. This is the only routine in which actual disk
* I/O is invoked. If an error occurs, a message is printed here, but the error
* is not reported to the caller. If the error occurred while purging a block
* from the cache, it is not clear what the caller could do about it anyway.
*/
int r, op_failed;
off_t pos;
dev_t dev = bp->lmfs_dev;
op_failed = 0;
assert(dev != NO_DEV);
ASSERT(bp->lmfs_bytes == fs_block_size);
ASSERT(fs_block_size > 0);
pos = (off_t)bp->lmfs_blocknr * fs_block_size;
if(fs_block_size > PAGE_SIZE) {
#define MAXPAGES 20
vir_bytes blockrem, vaddr = (vir_bytes) bp->data;
int p = 0;
static iovec_t iovec[MAXPAGES];
blockrem = fs_block_size;
while(blockrem > 0) {
vir_bytes chunk = blockrem >= PAGE_SIZE ? PAGE_SIZE : blockrem;
iovec[p].iov_addr = vaddr;
iovec[p].iov_size = chunk;
vaddr += chunk;
blockrem -= chunk;
p++;
}
r = bdev_gather(dev, pos, iovec, p, BDEV_NOFLAGS);
} else {
r = bdev_read(dev, pos, bp->data, fs_block_size,
BDEV_NOFLAGS);
}
if (r < 0) {
printf("fs cache: I/O error on device %d/%d, block %"PRIu64"\n",
major(dev), minor(dev), bp->lmfs_blocknr);
op_failed = 1;
} else if (r != (ssize_t) fs_block_size) {
r = END_OF_FILE;
op_failed = 1;
}
if (op_failed) {
bp->lmfs_dev = NO_DEV; /* invalidate block */
/* Report read errors to interested parties. */
rdwt_err = r;
}
}
/*===========================================================================*
* lmfs_invalidate *
*===========================================================================*/
void lmfs_invalidate(
dev_t device /* device whose blocks are to be purged */
)
{
/* Remove all the blocks belonging to some device from the cache. */
register struct buf *bp;
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
if (bp->lmfs_dev == device) {
assert(bp->data);
assert(bp->lmfs_bytes > 0);
munmap_t(bp->data, bp->lmfs_bytes);
bp->lmfs_dev = NO_DEV;
bp->lmfs_bytes = 0;
bp->data = NULL;
}
}
/* Clear the cache even if VM caching is disabled for the file system:
* caching may be disabled as side effect of an error, leaving blocks behind
* in the actual VM cache.
*/
vm_clear_cache(device);
}
/*===========================================================================*
* lmfs_flushdev *
*===========================================================================*/
void lmfs_flushdev(dev_t dev)
{
/* Flush all dirty blocks for one device. */
register struct buf *bp;
static struct buf **dirty; /* static so it isn't on stack */
static unsigned int dirtylistsize = 0;
int ndirty;
if(dirtylistsize != nr_bufs) {
if(dirtylistsize > 0) {
assert(dirty != NULL);
free(dirty);
}
if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
panic("couldn't allocate dirty buf list");
dirtylistsize = nr_bufs;
}
for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
if (!lmfs_isclean(bp) && bp->lmfs_dev == dev) {
dirty[ndirty++] = bp;
}
}
lmfs_rw_scattered(dev, dirty, ndirty, WRITING);
}
/*===========================================================================*
* lmfs_rw_scattered *
*===========================================================================*/
void lmfs_rw_scattered(
dev_t dev, /* major-minor device number */
struct buf **bufq, /* pointer to array of buffers */
int bufqsize, /* number of buffers */
int rw_flag /* READING or WRITING */
)
{
/* Read or write scattered data from a device. */
register struct buf *bp;
int gap;
register int i;
register iovec_t *iop;
static iovec_t iovec[NR_IOREQS];
off_t pos;
int iov_per_block;
unsigned int start_in_use = bufs_in_use, start_bufqsize = bufqsize;
assert(bufqsize >= 0);
if(bufqsize == 0) return;
/* for READING, check all buffers on the list are obtained and held
* (count > 0)
*/
if (rw_flag == READING) {
for(i = 0; i < bufqsize; i++) {
assert(bufq[i] != NULL);
assert(bufq[i]->lmfs_count > 0);
}
/* therefore they are all 'in use' and must be at least this many */
assert(start_in_use >= start_bufqsize);
}
assert(dev != NO_DEV);
assert(fs_block_size > 0);
iov_per_block = roundup(fs_block_size, PAGE_SIZE) / PAGE_SIZE;
assert(iov_per_block < NR_IOREQS);
/* (Shell) sort buffers on lmfs_blocknr. */
gap = 1;
do
gap = 3 * gap + 1;
while (gap <= bufqsize);
while (gap != 1) {
int j;
gap /= 3;
for (j = gap; j < bufqsize; j++) {
for (i = j - gap;
i >= 0 && bufq[i]->lmfs_blocknr > bufq[i + gap]->lmfs_blocknr;
i -= gap) {
bp = bufq[i];
bufq[i] = bufq[i + gap];
bufq[i + gap] = bp;
}
}
}
/* Set up I/O vector and do I/O. The result of bdev I/O is OK if everything
* went fine, otherwise the error code for the first failed transfer.
*/
while (bufqsize > 0) {
int nblocks = 0, niovecs = 0;
int r;
for (iop = iovec; nblocks < bufqsize; nblocks++) {
int p;
vir_bytes vdata, blockrem;
bp = bufq[nblocks];
if (bp->lmfs_blocknr != bufq[0]->lmfs_blocknr + nblocks)
break;
if(niovecs >= NR_IOREQS-iov_per_block) break;
vdata = (vir_bytes) bp->data;
blockrem = fs_block_size;
for(p = 0; p < iov_per_block; p++) {
vir_bytes chunk = blockrem < PAGE_SIZE ? blockrem : PAGE_SIZE;
iop->iov_addr = vdata;
iop->iov_size = chunk;
vdata += PAGE_SIZE;
blockrem -= chunk;
iop++;
niovecs++;
}
assert(p == iov_per_block);
assert(blockrem == 0);
}
assert(nblocks > 0);
assert(niovecs > 0);
pos = (off_t)bufq[0]->lmfs_blocknr * fs_block_size;
if (rw_flag == READING)
r = bdev_gather(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
else
r = bdev_scatter(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
/* Harvest the results. The driver may have returned an error, or it
* may have done less than what we asked for.
*/
if (r < 0) {
printf("fs cache: I/O error %d on device %d/%d, "
"block %"PRIu64"\n",
r, major(dev), minor(dev), bufq[0]->lmfs_blocknr);
}
for (i = 0; i < nblocks; i++) {
bp = bufq[i];
if (r < (ssize_t) fs_block_size) {
/* Transfer failed. */
if (i == 0) {
bp->lmfs_dev = NO_DEV; /* Invalidate block */
}
break;
}
if (rw_flag == READING) {
bp->lmfs_dev = dev; /* validate block */
lmfs_put_block(bp, PARTIAL_DATA_BLOCK);
} else {
MARKCLEAN(bp);
}
r -= fs_block_size;
}
bufq += i;
bufqsize -= i;
if (rw_flag == READING) {
/* Don't bother reading more than the device is willing to
* give at this time. Don't forget to release those extras.
*/
while (bufqsize > 0) {
lmfs_put_block(*bufq++, PARTIAL_DATA_BLOCK);
bufqsize--;
}
}
if (rw_flag == WRITING && i == 0) {
/* We're not making progress, this means we might keep
* looping. Buffers remain dirty if un-written. Buffers are
* lost if invalidate()d or LRU-removed while dirty. This
* is better than keeping unwritable blocks around forever..
*/
break;
}
}
if(rw_flag == READING) {
assert(start_in_use >= start_bufqsize);
/* READING callers assume all bufs are released. */
assert(start_in_use - start_bufqsize == bufs_in_use);
}
}
/*===========================================================================*
* rm_lru *
*===========================================================================*/
static void rm_lru(struct buf *bp)
{
/* Remove a block from its LRU chain. */
struct buf *next_ptr, *prev_ptr;
next_ptr = bp->lmfs_next; /* successor on LRU chain */
prev_ptr = bp->lmfs_prev; /* predecessor on LRU chain */
if (prev_ptr != NULL)
prev_ptr->lmfs_next = next_ptr;
else
front = next_ptr; /* this block was at front of chain */
if (next_ptr != NULL)
next_ptr->lmfs_prev = prev_ptr;
else
rear = prev_ptr; /* this block was at rear of chain */
}
/*===========================================================================*
* cache_resize *
*===========================================================================*/
static void cache_resize(unsigned int blocksize, unsigned int bufs)
{
struct buf *bp;
assert(blocksize > 0);
assert(bufs >= MINBUFS);
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
if(bp->lmfs_count != 0) panic("change blocksize with buffer in use");
lmfs_buf_pool(bufs);
fs_block_size = blocksize;
}
static void cache_heuristic_check(int major)
{
int bufs, d;
u64_t btotal, bfree, bused;
fs_blockstats(&btotal, &bfree, &bused);
bufs = fs_bufs_heuristic(10, btotal, bfree,
fs_block_size, major);
/* set the cache to the new heuristic size if the new one
* is more than 10% off from the current one.
*/
d = bufs-nr_bufs;
if(d < 0) d = -d;
if(d*100/nr_bufs > 10) {
cache_resize(fs_block_size, bufs);
}
}
/*===========================================================================*
* lmfs_set_blocksize *
*===========================================================================*/
void lmfs_set_blocksize(int new_block_size, int major)
{
cache_resize(new_block_size, MINBUFS);
cache_heuristic_check(major);
/* Decide whether to use seconday cache or not.
* Only do this if
* - it's available, and
* - use of it hasn't been disabled for this fs, and
* - our main FS device isn't a memory device
*/
vmcache = 0;
if(may_use_vmcache && !(new_block_size % PAGE_SIZE))
vmcache = 1;
}
/*===========================================================================*
* lmfs_buf_pool *
*===========================================================================*/
void lmfs_buf_pool(int new_nr_bufs)
{
/* Initialize the buffer pool. */
register struct buf *bp;
assert(new_nr_bufs >= MINBUFS);
if(nr_bufs > 0) {
assert(buf);
lmfs_flushall();
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
if(bp->data) {
assert(bp->lmfs_bytes > 0);
munmap_t(bp->data, bp->lmfs_bytes);
}
}
}
if(buf)
free(buf);
if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
panic("couldn't allocate buf list (%d)", new_nr_bufs);
if(buf_hash)
free(buf_hash);
if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
nr_bufs = new_nr_bufs;
bufs_in_use = 0;
front = &buf[0];
rear = &buf[nr_bufs - 1];
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
bp->lmfs_blocknr = NO_BLOCK;
bp->lmfs_dev = NO_DEV;
bp->lmfs_next = bp + 1;
bp->lmfs_prev = bp - 1;
bp->data = NULL;
bp->lmfs_bytes = 0;
}
front->lmfs_prev = NULL;
rear->lmfs_next = NULL;
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->lmfs_hash = bp->lmfs_next;
buf_hash[0] = front;
}
int lmfs_bufs_in_use(void)
{
return bufs_in_use;
}
int lmfs_nr_bufs(void)
{
return nr_bufs;
}
void lmfs_flushall(void)
{
struct buf *bp;
for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
if(bp->lmfs_dev != NO_DEV && !lmfs_isclean(bp))
lmfs_flushdev(bp->lmfs_dev);
}
int lmfs_fs_block_size(void)
{
return fs_block_size;
}
void lmfs_may_use_vmcache(int ok)
{
may_use_vmcache = ok;
}
void lmfs_reset_rdwt_err(void)
{
rdwt_err = OK;
}
int lmfs_rdwt_err(void)
{
return rdwt_err;
}