minix/commands/ibm/autopart.c
Thomas Veerman 360dc9104c - Added netconf script which makes it a lot easier to change network settings.
- Modified the setup script to use the netconf script for the network
   configuration:
    - Moved step 2 to step 8 and renamed the steps in between.
    - Autopart adapted to print step 3 instead of step 4.
2009-09-03 09:38:27 +00:00

2411 lines
57 KiB
C
Executable file

/* part 1.57 - Partition table editor Author: Kees J. Bot
* 13 Mar 1992
* Needs about 22k heap+stack.
*
* Forked july 2005 into autopart (Ben Gras), a mode which gives the user
* an easier time.
*
*/
#define nil 0
#include <sys/types.h>
#include <stdio.h>
#include <termcap.h>
#include <errno.h>
#include <unistd.h>
#include <stddef.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <fcntl.h>
#include <time.h>
#include <dirent.h>
#include <limits.h>
#include <a.out.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <minix/config.h>
#include <minix/const.h>
#include <minix/partition.h>
#include <minix/u64.h>
#include <minix/com.h>
#include <minix/sysinfo.h>
#include <ibm/partition.h>
#include <termios.h>
#include <stdarg.h>
/* Declare prototype. */
void printstep(int step, char *message);
/* True if a partition is an extended partition. */
#define ext_part(s) ((s) == 0x05 || (s) == 0x0F)
/* Minix master bootstrap code. */
char MASTERBOOT[] = "/usr/mdec/masterboot";
/* Template:
----first---- --geom/last-- ------sectors-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0d0 977 5 17
/dev/c0d0:2 0 0 2 976 4 16 2 83043 41521
Num Sort Type
0* p0 81 MINIX 0 0 3 33 4 9 3 2880 1440
1 p1 81 MINIX 33 4 10 178 2 2 2883 12284 6142
2 p2 81 MINIX 178 2 3 976 4 16 15167 67878 33939
3 p3 00 None 0 0 0 0 0 -1 0 0 0
*/
#define MAXSIZE 999999999L
#define SECTOR_SIZE 512
#define DEV_FD0 0x200 /* Device number of /dev/fd0 */
#define DEV_C0D0 0x300 /* Device number of /dev/c0d0 */
int min_region_mb = 500;
#define MIN_REGION_SECTORS (1024*1024*min_region_mb/SECTOR_SIZE)
#define arraysize(a) (sizeof(a) / sizeof((a)[0]))
#define arraylimit(a) ((a) + arraysize(a))
#define SORNOT(n) ((n) == 1 ? "" : "s")
/* screen colours */
#define COL_RED 1
#define COL_GREEN 2
#define COL_ORANGE 3
#define COL_BLUE 4
#define COL_MAGENTA 5
#define COL_CYAN 6
#define SURE_SERIOUS 1
#define SURE_BACK 2
void col(int col)
{
if(!col) printf("\033[0m");
else printf("\033[3%dm", col % 10);
}
void type2col(int type)
{
switch(type) {
/* minix */
case 0x80:
case MINIX_PART: col(COL_GREEN); break;
/* dos/windows */
case 0x0B: case 0x0C: case 0x0E: case 0x0F: case 0x42:
case 0x07: col(COL_CYAN); break;
/* linux */
case 0x82: case 0x83: col(COL_ORANGE); break;
}
}
int open_ct_ok(int fd)
{
int c = -1;
if(ioctl(fd, DIOCOPENCT, &c) < 0) {
printf("Warning: couldn't verify opencount, continuing\n");
return 1;
}
if(c == 1) return 1;
if(c < 1) { printf("Error: open count %d\n", c); }
return 0;
}
void report(const char *label)
{
fprintf(stderr, "part: %s: %s\n", label, strerror(errno));
}
void fatal(const char *label)
{
report(label);
exit(1);
}
struct termios termios;
void restore_ttyflags(void)
/* Reset the tty flags to how we got 'em. */
{
if (tcsetattr(0, TCSANOW, &termios) < 0) fatal("");
}
void tty_raw(void)
/* Set the terminal to raw mode, no signals, no echoing. */
{
struct termios rawterm;
rawterm= termios;
rawterm.c_lflag &= ~(ICANON|ISIG|ECHO);
rawterm.c_iflag &= ~(ICRNL);
if (tcsetattr(0, TCSANOW, &rawterm) < 0) fatal("");
}
#define ctrl(c) ((c) == '?' ? '\177' : ((c) & '\37'))
char t_cd[16], t_cm[32], t_so[16], t_se[16], t_md[16], t_me[16];
#define STATUSROW 10
void putchr(int c)
{
putchar(c);
}
void putstr(char *s)
{
int c;
while ((c= *s++) != 0) putchr(c);
}
void set_cursor(int row, int col)
{
tputs(tgoto(t_cm, col, row), 1, putchr);
}
int statusrow= STATUSROW;
int stat_ktl= 1;
int need_help= 1;
void stat_start(int serious)
/* Prepare for printing on a fresh status line, possibly highlighted. */
{
set_cursor(statusrow++, 0);
tputs(t_cd, 1, putchr);
if (serious) tputs(t_so, 1, putchr);
}
void stat_end(int ktl)
/* Closing bracket for stat_start. Sets "keystrokes to live" of message. */
{
tputs(t_se, 1, putchr);
stat_ktl= ktl;
need_help= 1;
}
void stat_reset(void)
/* Reset the statusline pointer and clear old messages if expired. */
{
if (stat_ktl > 0 && --stat_ktl == 0) {
statusrow= STATUSROW;
need_help= 1;
}
if (need_help && statusrow < (24-2)) {
if (statusrow > STATUSROW) stat_start(0);
stat_start(0);
putstr(
"Type '+' or '-' to change, 'r' to read, '?' for more help, '!' for advice");
}
statusrow= STATUSROW;
need_help= 0;
}
void clear_screen(void)
{
set_cursor(0, 0);
tputs(t_cd, 1, putchr);
stat_ktl= 1;
stat_reset();
}
void reset_tty(void)
/* Reset the tty to cooked mode. */
{
restore_ttyflags();
set_cursor(statusrow, 0);
tputs(t_cd, 1, putchr);
}
void *alloc(size_t n)
{
void *m;
if ((m= malloc(n)) == nil) { reset_tty(); fatal(""); }
return m;
}
#ifndef makedev /* Missing in sys/types.h */
#define minor(dev) (((dev) >> MINOR) & BYTE)
#define major(dev) (((dev) >> MAJOR) & BYTE)
#define makedev(major, minor) \
((dev_t) (((major) << MAJOR) | ((minor) << MINOR)))
#endif
typedef enum parttype { DUNNO, SUBPART, PRIMARY, FLOPPY } parttype_t;
typedef struct device {
struct device *next, *prev; /* Circular dequeue. */
dev_t rdev; /* Device number (sorting only). */
char *name; /* E.g. /dev/c0d0 */
char *subname; /* E.g. /dev/c0d0:2 */
parttype_t parttype;
int biosdrive;
} device_t;
typedef struct region {
/* A region is either an existing top-level partition
* entry (used_part is non-NULL) or free space (free_*
* contains data).
*/
struct part_entry used_part;
int is_used_part;
int tableno;
int free_sec_start, free_sec_last;
} region_t;
/* A disk has between 1 and 2*partitions+1 regions;
* the last case is free space before and after every partition.
*/
#define NR_REGIONS (2*NR_PARTITIONS+1)
region_t regions[NR_REGIONS];
int nr_partitions = 0, nr_regions = 0, free_regions, used_regions;
int nordonly = 0;
device_t *firstdev= nil, *curdev;
#define MAX_DEVICES 100
static struct {
device_t *dev;
int nr_partitions, free_regions, used_regions, sectors, nr_regions;
int biosdrive;
region_t regions[NR_REGIONS];
} devices[MAX_DEVICES];
void newdevice(char *name, int scanning, int disk_only)
/* Add a device to the device list. If scanning is set then we are reading
* /dev, so insert the device in device number order and make /dev/c0d0 current.
*/
{
device_t *new, *nextdev, *prevdev;
struct stat st;
st.st_rdev= 0;
if (scanning) {
if (stat(name, &st) < 0 || !S_ISBLK(st.st_mode)) return;
switch (major(st.st_rdev)) {
case 3:
/* Disk controller */
if (minor(st.st_rdev) >= 0x80
|| minor(st.st_rdev) % 5 != 0) return;
break;
default:
return;
}
/* Interesting device found. */
} else {
if(stat(name, &st) < 0) { perror(name); return; }
}
new= alloc(sizeof(*new));
new->rdev= st.st_rdev;
new->name= alloc((strlen(name) + 1) * sizeof(new->name[0]));
strcpy(new->name, name);
new->subname= new->name;
new->parttype= DUNNO;
if (major(st.st_rdev) == major(DEV_FD0) && minor(st.st_rdev) < 112) {
new->parttype= FLOPPY;
} else
if (st.st_rdev >= DEV_C0D0 && minor(st.st_rdev) < 128
&& minor(st.st_rdev) % 5 == 0) {
new->parttype= PRIMARY;
}
if (firstdev == nil) {
firstdev= new;
new->next= new->prev= new;
curdev= firstdev;
return;
}
nextdev= firstdev;
while (new->rdev >= nextdev->rdev
&& (nextdev= nextdev->next) != firstdev) {}
prevdev= nextdev->prev;
new->next= nextdev;
nextdev->prev= new;
new->prev= prevdev;
prevdev->next= new;
if (new->rdev < firstdev->rdev) firstdev= new;
if (new->rdev == DEV_C0D0) curdev= new;
if (curdev->rdev != DEV_C0D0) curdev= firstdev;
}
void getdevices(void)
/* Get all block devices from /dev that look interesting. */
{
DIR *d;
struct dirent *e;
char name[5 + NAME_MAX + 1];
if ((d= opendir("/dev")) == nil) fatal("/dev");
while ((e= readdir(d)) != nil) {
strcpy(name, "/dev/");
strcpy(name + 5, e->d_name);
newdevice(name, 1, 1);
}
(void) closedir(d);
}
/* One featureful master bootstrap. */
unsigned char bootstrap[] = {
0353,0001,0000,0061,0300,0216,0330,0216,0300,0372,0216,0320,0274,0000,0174,0373,
0275,0276,0007,0211,0346,0126,0277,0000,0006,0271,0000,0001,0374,0363,0245,0352,
0044,0006,0000,0000,0264,0002,0315,0026,0250,0010,0164,0033,0350,0071,0001,0174,
0007,0060,0344,0315,0026,0242,0205,0007,0054,0060,0074,0012,0163,0363,0120,0350,
0046,0001,0205,0007,0130,0353,0012,0240,0002,0006,0204,0300,0165,0003,0351,0147,
0000,0230,0262,0005,0366,0362,0262,0200,0000,0302,0210,0340,0120,0350,0234,0000,
0163,0003,0351,0147,0000,0130,0054,0001,0175,0003,0351,0141,0000,0276,0276,0175,
0211,0357,0271,0040,0000,0363,0245,0200,0301,0004,0211,0356,0215,0174,0020,0070,
0154,0004,0164,0016,0213,0135,0010,0053,0134,0010,0213,0135,0012,0033,0134,0012,
0163,0014,0212,0044,0206,0144,0020,0210,0044,0106,0071,0376,0162,0364,0211,0376,
0201,0376,0356,0007,0162,0326,0342,0322,0211,0356,0264,0020,0366,0344,0001,0306,
0200,0174,0004,0001,0162,0026,0353,0021,0204,0322,0175,0041,0211,0356,0200,0174,
0004,0000,0164,0013,0366,0004,0200,0164,0006,0350,0070,0000,0162,0053,0303,0203,
0306,0020,0201,0376,0376,0007,0162,0346,0350,0215,0000,0211,0007,0376,0302,0204,
0322,0174,0023,0315,0021,0321,0340,0321,0340,0200,0344,0003,0070,0342,0167,0355,
0350,0011,0000,0162,0350,0303,0350,0003,0000,0162,0146,0303,0211,0356,0214,0134,
0010,0214,0134,0012,0277,0003,0000,0122,0006,0127,0264,0010,0315,0023,0137,0007,
0200,0341,0077,0376,0306,0210,0310,0366,0346,0211,0303,0213,0104,0010,0213,0124,
0012,0367,0363,0222,0210,0325,0366,0361,0060,0322,0321,0352,0321,0352,0010,0342,
0210,0321,0376,0301,0132,0210,0306,0273,0000,0174,0270,0001,0002,0315,0023,0163,
0020,0200,0374,0200,0164,0011,0117,0174,0006,0060,0344,0315,0023,0163,0270,0371,
0303,0201,0076,0376,0175,0125,0252,0165,0001,0303,0350,0013,0000,0243,0007,0353,
0005,0350,0004,0000,0227,0007,0353,0376,0136,0255,0126,0211,0306,0254,0204,0300,
0164,0011,0264,0016,0273,0001,0000,0315,0020,0353,0362,0303,0057,0144,0145,0166,
0057,0150,0144,0077,0010,0000,0015,0012,0000,0116,0157,0156,0145,0040,0141,0143,
0164,0151,0166,0145,0015,0012,0000,0122,0145,0141,0144,0040,0145,0162,0162,0157,
0162,0040,0000,0116,0157,0164,0040,0142,0157,0157,0164,0141,0142,0154,0145,0040,
0000,0000,
};
int dirty= 0;
unsigned char bootblock[SECTOR_SIZE];
struct part_entry table[1 + NR_PARTITIONS];
int existing[1 + NR_PARTITIONS];
unsigned long offset= 0, extbase= 0, extsize;
int submerged= 0;
char sort_index[1 + NR_PARTITIONS], sort_order[1 + NR_PARTITIONS];
unsigned cylinders= 1, heads= 1, sectors= 1, secpcyl= 1;
unsigned alt_cyls= 1, alt_heads= 1, alt_secs= 1;
int precise= 0;
int device= -1;
unsigned long sortbase(struct part_entry *pe)
{
return pe->sysind == NO_PART ? -1 : pe->lowsec;
}
void sort(void)
/* Let the sort_index array show the order partitions are sorted in. */
{
int i, j;
for (i= 1; i <= NR_PARTITIONS; i++) sort_order[i]= i;
for (i= 1; i <= NR_PARTITIONS; i++) {
for (j= 1; j <= NR_PARTITIONS-1; j++) {
int sj= sort_order[j], sj1= sort_order[j+1];
if (sortbase(&table[sj]) > sortbase(&table[sj1])) {
sort_order[j]= sj1;
sort_order[j+1]= sj;
}
}
}
for (i= 1; i <= NR_PARTITIONS; i++) sort_index[sort_order[i]]= i;
}
void dos2chs(unsigned char *dos, unsigned *chs)
/* Extract cylinder, head and sector from the three bytes DOS uses to address
* a sector. Note that bits 8 & 9 of the cylinder number come from bit 6 & 7
* of the sector byte. The sector number is rebased to count from 0.
*/
{
chs[0]= ((dos[1] & 0xC0) << 2) | dos[2];
chs[1]= dos[0];
chs[2]= (dos[1] & 0x3F) - 1;
}
void abs2dos(unsigned char *dos, unsigned long pos)
/* Translate a sector offset to three DOS bytes. */
{
unsigned h, c, s;
c= pos / secpcyl;
h= (pos % secpcyl) / sectors;
s= pos % sectors + 1;
dos[0]= h;
dos[1]= s | ((c >> 2) & 0xC0);
dos[2]= c & 0xFF;
}
void recompute0(void)
/* Recompute the partition size for the device after a geometry change. */
{
if (device < 0) {
cylinders= heads= sectors= 1;
memset(table, 0, sizeof(table));
} else
if (!precise && offset == 0) {
table[0].lowsec= 0;
table[0].size= (unsigned long) cylinders * heads * sectors;
}
table[0].sysind= device < 0 ? NO_PART : MINIX_PART;
secpcyl= heads * sectors;
}
void guess_geometry(void)
/* With a bit of work one can deduce the disk geometry from the partition
* table. This may be necessary if the driver gets it wrong. (If partition
* tables didn't have C/H/S numbers we would not care at all...)
*/
{
int i, n;
struct part_entry *pe;
unsigned chs[3];
unsigned long sec;
unsigned h, s;
unsigned char HS[256][8]; /* Bit map off all possible H/S */
alt_cyls= alt_heads= alt_secs= 0;
/* Initially all possible H/S combinations are possible. HS[h][0]
* bit 0 is used to rule out a head value.
*/
for (h= 1; h <= 255; h++) {
for (s= 0; s < 8; s++) HS[h][s]= 0xFF;
}
for (i= 0; i < 2*NR_PARTITIONS; i++) {
pe= &(table+1)[i >> 1];
if (pe->sysind == NO_PART) continue;
/* Get the end or start sector numbers (in that order). */
if ((i & 1) == 0) {
dos2chs(&pe->last_head, chs);
sec= pe->lowsec + pe->size - 1;
} else {
dos2chs(&pe->start_head, chs);
sec= pe->lowsec;
}
if (chs[0] >= alt_cyls) alt_cyls= chs[0]+1;
/* Which H/S combinations can be ruled out? */
for (h= 1; h <= 255; h++) {
if (HS[h][0] == 0) continue;
n = 0;
for (s= 1; s <= 63; s++) {
if ((chs[0] * h + chs[1]) * s + chs[2] != sec) {
HS[h][s/8] &= ~(1 << (s%8));
}
if (HS[h][s/8] & (1 << (s%8))) n++;
}
if (n == 0) HS[h][0]= 0;
}
}
/* See if only one remains. */
i= 0;
for (h= 1; h <= 255; h++) {
if (HS[h][0] == 0) continue;
for (s= 1; s <= 63; s++) {
if (HS[h][s/8] & (1 << (s%8))) {
i++;
alt_heads= h;
alt_secs= s;
}
}
}
/* Forget it if more than one choice... */
if (i > 1) alt_cyls= alt_heads= alt_secs= 0;
}
void geometry(void)
/* Find out the geometry of the device by querying the driver, or by looking
* at the partition table. These numbers are crosschecked to make sure that
* the geometry is correct. Master bootstraps other than the Minix one use
* the CHS numbers in the partition table to load the bootstrap of the active
* partition.
*/
{
struct stat dst;
int err= 0;
struct partition geometry;
if (submerged) {
/* Geometry already known. */
sort();
return;
}
precise= 0;
cylinders= 0;
recompute0();
if (device < 0) return;
/* Try to guess the geometry from the partition table. */
guess_geometry();
/* Try to get the geometry from the driver. */
(void) fstat(device, &dst);
if (S_ISBLK(dst.st_mode) || S_ISCHR(dst.st_mode)) {
/* Try to get the drive's geometry from the driver. */
if (ioctl(device, DIOCGETP, &geometry) < 0)
err= errno;
else {
table[0].lowsec= div64u(geometry.base, SECTOR_SIZE);
table[0].size= div64u(geometry.size, SECTOR_SIZE);
cylinders= geometry.cylinders;
heads= geometry.heads;
sectors= geometry.sectors;
precise= 1;
}
} else {
err= ENODEV;
}
if (err != 0) {
/* Getting the geometry from the driver failed, so use the
* alternate geometry.
*/
if (alt_heads == 0) {
alt_cyls= table[0].size / (64 * 32);
alt_heads= 64;
alt_secs= 32;
}
cylinders= alt_cyls;
heads= alt_heads;
sectors= alt_secs;
stat_start(1);
printf("Failure to get the geometry of %s: %s", curdev->name,
errno == ENOTTY ? "No driver support" : strerror(err));
stat_end(5);
stat_start(0);
printf("The geometry has been guessed as %ux%ux%u",
cylinders, heads, sectors);
stat_end(5);
} else {
if (alt_heads == 0) {
alt_cyls= cylinders;
alt_heads= heads;
alt_secs= sectors;
}
if (heads != alt_heads || sectors != alt_secs) {
printf(
"The geometry obtained from the driver\n"
"does not match the geometry implied by the partition\n"
"table. Please use expert mode instead.\n");
exit(1);
}
}
/* Show the base and size of the device instead of the whole drive.
* This makes sense for subpartitioning primary partitions.
*/
if (precise && ioctl(device, DIOCGETP, &geometry) >= 0) {
table[0].lowsec= div64u(geometry.base, SECTOR_SIZE);
table[0].size= div64u(geometry.size, SECTOR_SIZE);
} else {
precise= 0;
}
recompute0();
sort();
}
typedef struct indicators { /* Partition type to partition name. */
unsigned char ind;
char name[10];
} indicators_t;
indicators_t ind_table[]= {
{ 0x00, "None" },
{ 0x01, "FAT-12" },
{ 0x02, "XENIX /" },
{ 0x03, "XENIX usr" },
{ 0x04, "FAT-16" },
{ 0x05, "EXTENDED" },
{ 0x06, "FAT-16" },
{ 0x07, "HPFS/NTFS" },
{ 0x08, "AIX" },
{ 0x09, "COHERENT" },
{ 0x0A, "OS/2" },
{ 0x0B, "FAT-32" },
{ 0x0C, "FAT?" },
{ 0x0E, "FAT?" },
{ 0x0F, "EXTENDED" },
{ 0x10, "OPUS" },
{ 0x40, "VENIX286" },
{ 0x42, "W2000 Dyn" },
{ 0x52, "MICROPORT" },
{ 0x63, "386/IX" },
{ 0x64, "NOVELL286" },
{ 0x65, "NOVELL386" },
{ 0x75, "PC/IX" },
{ 0x80, "MINIX-OLD" },
{ 0x81, "MINIX" },
{ 0x82, "LINUXswap" },
{ 0x83, "LINUX" },
{ 0x93, "AMOEBA" },
{ 0x94, "AMOEBAbad" },
{ 0xA5, "386BSD" },
{ 0xB7, "BSDI" },
{ 0xB8, "BSDI swap" },
{ 0xC7, "SYRINX" },
{ 0xDB, "CPM" },
{ 0xFF, "BADBLOCKS" },
};
char *typ2txt(int ind)
/* Translate a numeric partition indicator for human eyes. */
{
indicators_t *pind;
for (pind= ind_table; pind < arraylimit(ind_table); pind++) {
if (pind->ind == ind) return pind->name;
}
return "unknown system";
}
int round_sysind(int ind, int delta)
/* Find the next known partition type starting with ind in direction delta. */
{
indicators_t *pind;
ind= (ind + delta) & 0xFF;
if (delta < 0) {
for (pind= arraylimit(ind_table)-1; pind->ind > ind; pind--) {}
} else {
for (pind= ind_table; pind->ind < ind; pind++) {}
}
return pind->ind;
}
/* Objects on the screen, either simple pieces of the text or the cylinder
* number of the start of partition three.
*/
typedef enum objtype {
O_INFO, O_TEXT, O_DEV, O_SUB,
O_TYPTXT, O_SORT, O_NUM, O_TYPHEX,
O_CYL, O_HEAD, O_SEC,
O_SCYL, O_SHEAD, O_SSEC, O_LCYL, O_LHEAD, O_LSEC, O_BASE, O_SIZE, O_KB
} objtype_t;
#define rjust(type) ((type) >= O_TYPHEX)
#define computed(type) ((type) >= O_TYPTXT)
typedef struct object {
struct object *next;
objtype_t type; /* Text field, cylinder number, etc. */
char flags; /* Modifiable? */
char row;
char col;
char len;
struct part_entry *entry; /* What does the object refer to? */
char *text;
char value[20]; /* Value when printed. */
} object_t;
#define OF_MOD 0x01 /* Object value is modifiable. */
#define OF_ODD 0x02 /* It has a somewhat odd value. */
#define OF_BAD 0x04 /* Its value is no good at all. */
/* Events: (Keypress events are the value of the key pressed.) */
#define E_ENTER (-1) /* Cursor moves onto object. */
#define E_LEAVE (-2) /* Cursor leaves object. */
#define E_WRITE (-3) /* Write, but not by typing 'w'. */
/* The O_SIZE objects have a dual identity. */
enum howend { SIZE, LAST } howend= SIZE;
object_t *world= nil;
object_t *curobj= nil;
object_t *newobject(objtype_t type, int flags, int row, int col, int len)
/* Make a new object given a type, flags, position and length on the screen. */
{
object_t *new;
object_t **aop= &world;
new= alloc(sizeof(*new));
new->type= type;
new->flags= flags;
new->row= row;
new->col= col;
new->len= len;
new->entry= nil;
new->text= "";
new->value[0]= 0;
new->next= *aop;
*aop= new;
return new;
}
unsigned long entry2base(struct part_entry *pe)
/* Return the base sector of the partition if defined. */
{
return pe->sysind == NO_PART ? 0 : pe->lowsec;
}
unsigned long entry2last(struct part_entry *pe)
{
return pe->sysind == NO_PART ? -1 : pe->lowsec + pe->size - 1;
}
unsigned long entry2size(struct part_entry *pe)
{
return pe->sysind == NO_PART ? 0 : pe->size;
}
int typing; /* Set if a digit has been typed to set a value. */
int magic; /* Changes when using the magic key. */
void event(int ev, object_t *op);
void m_redraw(int ev, object_t *op)
/* Redraw the screen. */
{
object_t *op2;
if (ev != ctrl('L')) return;
clear_screen();
for (op2= world; op2 != nil; op2= op2->next) op2->value[0]= 0;
}
void m_toggle(int ev, object_t *op)
/* Toggle between the driver and alternate geometry. */
{
unsigned t;
if (ev != 'X') return;
if (alt_cyls == cylinders && alt_heads == heads && alt_secs == sectors)
return;
t= cylinders; cylinders= alt_cyls; alt_cyls= t;
t= heads; heads= alt_heads; alt_heads= t;
t= sectors; sectors= alt_secs; alt_secs= t;
dirty= 1;
recompute0();
}
char size_last[]= "Size";
void m_orientation(int ev, object_t *op)
{
if (ev != ' ') return;
switch (howend) {
case SIZE:
howend= LAST;
strcpy(size_last, "Last");
break;
case LAST:
howend= SIZE;
strcpy(size_last, "Size");
}
}
void m_move(int ev, object_t *op)
/* Move to the nearest modifiably object in the intended direction. Objects
* on the same row or column are really near.
*/
{
object_t *near, *op2;
unsigned dist, d2, dr, dc;
if (ev != 'h' && ev != 'j' && ev != 'k' && ev != 'l' && ev != 'H')
return;
if (device < 0) {
/* No device open? Then try to read first. */
event('r', op);
if (device < 0) return;
}
near= op;
dist= -1;
for (op2= world; op2 != nil; op2= op2->next) {
if (op2 == op || !(op2->flags & OF_MOD)) continue;
dr= abs(op2->row - op->row);
dc= abs(op2->col - op->col);
d2= 25*dr*dr + dc*dc;
if (op2->row != op->row && op2->col != op->col) d2+= 1000;
switch (ev) {
case 'h': /* Left */
if (op2->col >= op->col) d2= -1;
break;
case 'j': /* Down */
if (op2->row <= op->row) d2= -1;
break;
case 'k': /* Up */
if (op2->row >= op->row) d2= -1;
break;
case 'l': /* Right */
if (op2->col <= op->col) d2= -1;
break;
case 'H': /* Home */
if (op2->type == O_DEV) d2= 0;
}
if (d2 < dist) { near= op2; dist= d2; }
}
if (near != op) event(E_LEAVE, op);
event(E_ENTER, near);
}
void m_updown(int ev, object_t *op)
/* Move a partition table entry up or down. */
{
int i, j;
struct part_entry tmp;
int tmpx;
if (ev != ctrl('K') && ev != ctrl('J')) return;
if (op->entry == nil) return;
i= op->entry - table;
if (ev == ctrl('K')) {
if (i <= 1) return;
j= i-1;
} else {
if (i >= NR_PARTITIONS) return;
j= i+1;
}
tmp= table[i]; table[i]= table[j]; table[j]= tmp;
tmpx= existing[i]; existing[i]= existing[j]; existing[j]= tmpx;
sort();
dirty= 1;
event(ev == ctrl('K') ? 'k' : 'j', op);
}
void m_enter(int ev, object_t *op)
/* We've moved onto this object. */
{
if (ev != E_ENTER && ev != ' ' && ev != '<' && ev != '>' && ev != 'X')
return;
curobj= op;
typing= 0;
magic= 0;
}
void m_leave(int ev, object_t *op)
/* About to leave this object. */
{
if (ev != E_LEAVE) return;
}
int within(unsigned *var, unsigned low, unsigned value, unsigned high)
/* Only set *var to value if it looks reasonable. */
{
if (low <= value && value <= high) {
*var= value;
return 1;
} else
return 0;
}
int lwithin(unsigned long *var, unsigned long low, unsigned long value,
unsigned long high)
{
if (low <= value && value <= high) {
*var= value;
return 1;
} else
return 0;
}
int nextdevice(object_t *op, int delta)
/* Select the next or previous device from the device list. */
{
dev_t rdev;
if (offset != 0) return 0;
if (dirty) event(E_WRITE, op);
if (dirty) return 0;
if (device >= 0) {
(void) close(device);
device= -1;
}
recompute0();
rdev= curdev->rdev;
if (delta < 0) {
do
curdev= curdev->prev;
while (delta < -1 && major(curdev->rdev) == major(rdev)
&& curdev->rdev < rdev);
} else {
do
curdev= curdev->next;
while (delta > 1 && major(curdev->rdev) == major(rdev)
&& curdev->rdev > rdev);
}
return 1;
}
void check_ind(struct part_entry *pe)
/* If there are no other partitions then make this new one active. */
{
struct part_entry *pe2;
int i = 0;
for (pe2= table + 1; pe2 < table + 1 + NR_PARTITIONS; pe2++, i++)
if (pe2->sysind != NO_PART && (pe2->bootind & ACTIVE_FLAG))
return;
pe->bootind= ACTIVE_FLAG;
dirty = 1;
}
int check_existing(struct part_entry *pe)
/* Check and if not ask if an existing partition may be modified. */
{
static int expert= 0;
int c;
if (expert || pe == nil || !existing[pe - table]) return 1;
stat_start(1);
putstr("Do you wish to modify existing partitions? (y/n) ");
fflush(stdout);
while ((c= getchar()) != 'y' && c != 'n') {}
putchr(c);
stat_end(3);
return (expert= (c == 'y'));
}
void m_modify(int ev, object_t *op)
/* Increment, decrement, set, or toggle the value of an object, using
* arithmetic tricks the author doesn't understand either.
*/
{
object_t *op2;
struct part_entry *pe= op->entry;
int mul, delta;
unsigned level= 1;
unsigned long surplus;
int radix= op->type == O_TYPHEX ? 0x10 : 10;
unsigned long t;
if (device < 0 && op->type != O_DEV) return;
switch (ev) {
case '-':
mul= radix; delta= -1; typing= 0;
break;
case '+':
mul= radix; delta= 1; typing= 0;
break;
case '\b':
if (!typing) return;
mul= 1; delta= 0;
break;
case '\r':
typing= 0;
return;
default:
if ('0' <= ev && ev <= '9')
delta= ev - '0';
else
if (radix == 0x10 && 'a' <= ev && ev <= 'f')
delta= ev - 'a' + 10;
else
if (radix == 0x10 && 'A' <= ev && ev <= 'F')
delta= ev - 'A' + 10;
else
return;
mul= typing ? radix*radix : 0;
typing= 1;
}
magic= 0;
if (!check_existing(pe)) return;
switch (op->type) {
case O_DEV:
if (ev != '-' && ev != '+') return;
if (!nextdevice(op, delta)) return;
break;
case O_CYL:
if (!within(&cylinders, 1,
cylinders * mul / radix + delta, 1024)) return;
recompute0();
break;
case O_HEAD:
if (!within(&heads, 1, heads * mul / radix + delta, 255))
return;
recompute0();
break;
case O_SEC:
if (!within(&sectors, 1, sectors * mul / radix + delta, 63))
return;
recompute0();
break;
case O_NUM:
if (ev != '-' && ev != '+') return;
for (op2= world; op2 != nil; op2= op2->next) {
if (op2->type == O_NUM && ev == '+')
op2->entry->bootind= 0;
}
op->entry->bootind= ev == '+' ? ACTIVE_FLAG : 0;
break;
case O_TYPHEX:
check_ind(pe);
pe->sysind= pe->sysind * mul / radix + delta;
break;
case O_TYPTXT:
if (ev != '-' && ev != '+') return;
check_ind(pe);
pe->sysind= round_sysind(pe->sysind, delta);
break;
case O_SCYL:
level= heads;
case O_SHEAD:
level*= sectors;
case O_SSEC:
if (op->type != O_SCYL && ev != '-' && ev != '+') return;
case O_BASE:
if (pe->sysind == NO_PART) memset(pe, 0, sizeof(*pe));
t= pe->lowsec;
surplus= t % level;
if (!lwithin(&t, 0L,
(t / level * mul / radix + delta) * level + surplus,
MAXSIZE)) return;
if (howend == LAST || op->type != O_BASE)
pe->size-= t - pe->lowsec;
pe->lowsec= t;
check_ind(pe);
if (pe->sysind == NO_PART) pe->sysind= MINIX_PART;
break;
case O_LCYL:
level= heads;
case O_LHEAD:
level*= sectors;
case O_LSEC:
if (op->type != O_LCYL && ev != '-' && ev != '+') return;
if (pe->sysind == NO_PART) memset(pe, 0, sizeof(*pe));
t= pe->lowsec + pe->size - 1 + level;
surplus= t % level - mul / radix * level;
if (!lwithin(&t, 0L,
(t / level * mul / radix + delta) * level + surplus,
MAXSIZE)) return;
pe->size= t - pe->lowsec + 1;
check_ind(pe);
if (pe->sysind == NO_PART) pe->sysind= MINIX_PART;
break;
case O_KB:
level= 2;
if (mul == 0) pe->size= 0; /* new value, no surplus */
case O_SIZE:
if (pe->sysind == NO_PART) {
if (op->type == O_KB || howend == SIZE) {
/* First let loose magic to set the base. */
event('m', op);
magic= 0;
pe->size= 0;
event(ev, op);
return;
}
memset(pe, 0, sizeof(*pe));
}
t= (op->type == O_KB || howend == SIZE) ? pe->size
: pe->lowsec + pe->size - 1;
surplus= t % level;
if (!lwithin(&t, 0L,
(t / level * mul / radix + delta) * level + surplus,
MAXSIZE)) return;
pe->size= (op->type == O_KB || howend == SIZE) ? t :
t - pe->lowsec + 1;
check_ind(pe);
if (pe->sysind == NO_PART) pe->sysind= MINIX_PART;
break;
default:
return;
}
/* The order among the entries may have changed. */
sort();
dirty= 1;
}
unsigned long spell[3 + 4 * (1+NR_PARTITIONS)];
int nspells;
objtype_t touching;
void newspell(unsigned long charm)
/* Add a new spell, descending order for the base, ascending for the size. */
{
int i, j;
if (charm - table[0].lowsec > table[0].size) return;
for (i= 0; i < nspells; i++) {
if (charm == spell[i]) return; /* duplicate */
if (touching == O_BASE) {
if (charm == table[0].lowsec + table[0].size) return;
if ((spell[0] - charm) < (spell[0] - spell[i])) break;
} else {
if (charm == table[0].lowsec) return;
if ((charm - spell[0]) < (spell[i] - spell[0])) break;
}
}
for (j= ++nspells; j > i; j--) spell[j]= spell[j-1];
spell[i]= charm;
}
void m_magic(int ev, object_t *op)
/* Apply magic onto a base or size number. */
{
struct part_entry *pe= op->entry, *pe2;
int rough= (offset != 0 && extbase == 0);
if (ev != 'm' || device < 0) return;
typing= 0;
if (!check_existing(pe)) return;
if (magic == 0) {
/* See what magic we can let loose on this value. */
nspells= 1;
/* First spell, the current value. */
switch (op->type) {
case O_SCYL:
case O_SHEAD: /* Start of partition. */
case O_SSEC:
case O_BASE:
touching= O_BASE;
spell[0]= pe->lowsec;
break;
case O_LCYL:
case O_LHEAD:
case O_LSEC: /* End of partition. */
case O_KB:
case O_SIZE:
touching= O_SIZE;
spell[0]= pe->lowsec + pe->size;
break;
default:
return;
}
if (pe->sysind == NO_PART) {
memset(pe, 0, sizeof(*pe));
check_ind(pe);
pe->sysind= MINIX_PART;
spell[0]= 0;
if (touching == O_SIZE) {
/* First let loose magic on the base. */
object_t *op2;
for (op2= world; op2 != nil; op2= op2->next) {
if (op2->row == op->row &&
op2->type == O_BASE) {
event('m', op2);
}
}
magic= 0;
event('m', op);
return;
}
}
/* Avoid the first sector on the device. */
if (spell[0] == table[0].lowsec) newspell(spell[0] + 1);
/* Further interesting values are the the bases of other
* partitions or their ends.
*/
for (pe2= table; pe2 < table + 1 + NR_PARTITIONS; pe2++) {
if (pe2 == pe || pe2->sysind == NO_PART) continue;
if (pe2->lowsec == table[0].lowsec)
newspell(table[0].lowsec + 1);
else
newspell(pe2->lowsec);
newspell(pe2->lowsec + pe2->size);
if (touching == O_BASE && howend == SIZE) {
newspell(pe2->lowsec - pe->size);
newspell(pe2->lowsec + pe2->size - pe->size);
}
if (pe2->lowsec % sectors != 0) rough= 1;
}
/* Present values rounded up to the next cylinder unless
* the table is already a mess. Use "start + 1 track" instead
* of "start + 1 cylinder". Also add the end of the last
* cylinder.
*/
if (!rough) {
unsigned long n= spell[0];
if (n == table[0].lowsec) n++;
n= (n + sectors - 1) / sectors * sectors;
if (n != table[0].lowsec + sectors)
n= (n + secpcyl - 1) / secpcyl * secpcyl;
newspell(n);
if (touching == O_SIZE)
newspell(table[0].size / secpcyl * secpcyl);
}
}
/* Magic has been applied, a spell needs to be chosen. */
if (++magic == nspells) magic= 0;
if (touching == O_BASE) {
if (howend == LAST) pe->size-= spell[magic] - pe->lowsec;
pe->lowsec= spell[magic];
} else
pe->size= spell[magic] - pe->lowsec;
/* The order among the entries may have changed. */
sort();
dirty= 1;
}
typedef struct diving {
struct diving *up;
struct part_entry old0;
char *oldsubname;
parttype_t oldparttype;
unsigned long oldoffset;
unsigned long oldextbase;
} diving_t;
diving_t *diving= nil;
void m_in(int ev, object_t *op)
/* Go down into a primary or extended partition. */
{
diving_t *newdiv;
struct part_entry *pe= op->entry, ext;
int n;
if (ev != '>' || device < 0 || pe == nil || pe == &table[0]
|| (!(pe->sysind == MINIX_PART && offset == 0)
&& !ext_part(pe->sysind))
|| pe->size == 0) return;
ext= *pe;
if (extbase != 0) ext.size= extbase + extsize - ext.lowsec;
if (dirty) event(E_WRITE, op);
if (dirty) return;
if (device >= 0) { close(device); device= -1; }
newdiv= alloc(sizeof(*newdiv));
newdiv->old0= table[0];
newdiv->oldsubname= curdev->subname;
newdiv->oldparttype= curdev->parttype;
newdiv->oldoffset= offset;
newdiv->oldextbase= extbase;
newdiv->up= diving;
diving= newdiv;
table[0]= ext;
n= strlen(diving->oldsubname);
curdev->subname= alloc((n + 3) * sizeof(curdev->subname[0]));
strcpy(curdev->subname, diving->oldsubname);
curdev->subname[n++]= ':';
curdev->subname[n++]= '0' + (pe - table - 1);
curdev->subname[n]= 0;
curdev->parttype= curdev->parttype == PRIMARY ? SUBPART : DUNNO;
offset= ext.lowsec;
if (ext_part(ext.sysind) && extbase == 0) {
extbase= ext.lowsec;
extsize= ext.size;
curdev->parttype= DUNNO;
}
submerged= 1;
event('r', op);
}
void m_out(int ev, object_t *op)
/* Go up from an extended or subpartition table to its enclosing. */
{
diving_t *olddiv;
if (ev != '<' || diving == nil) return;
if (dirty) event(E_WRITE, op);
if (dirty) return;
if (device >= 0) { close(device); device= -1; }
olddiv= diving;
diving= olddiv->up;
table[0]= olddiv->old0;
free(curdev->subname);
curdev->subname= olddiv->oldsubname;
curdev->parttype= olddiv->oldparttype;
offset= olddiv->oldoffset;
extbase= olddiv->oldextbase;
free(olddiv);
event('r', op);
if (diving == nil) submerged= 0; /* We surfaced. */
}
void installboot(unsigned char *bootblock, char *masterboot)
/* Install code from a master bootstrap into a boot block. */
{
FILE *mfp;
struct exec hdr;
int n;
char *err;
if ((mfp= fopen(masterboot, "r")) == nil) {
err= strerror(errno);
goto m_err;
}
n= fread(&hdr, sizeof(char), A_MINHDR, mfp);
if (ferror(mfp)) {
err= strerror(errno);
fclose(mfp);
goto m_err;
}
if (n < A_MINHDR || BADMAG(hdr) || hdr.a_cpu != A_I8086) {
err= "Not an 8086 executable";
fclose(mfp);
goto m_err;
}
if (hdr.a_text + hdr.a_data > PART_TABLE_OFF) {
err= "Does not fit in a boot sector";
fclose(mfp);
goto m_err;
}
fseek(mfp, hdr.a_hdrlen, 0);
fread(bootblock, sizeof(char), (size_t) (hdr.a_text + hdr.a_data), mfp);
if (ferror(mfp)) {
err= strerror(errno);
fclose(mfp);
goto m_err;
}
fclose(mfp);
/* Bootstrap installed. */
return;
m_err:
stat_start(1);
printf("%s: %s", masterboot, err);
stat_end(5);
}
ssize_t boot_readwrite(int rw)
/* Read (0) or write (1) the boot sector. */
{
u64_t off64 = mul64u(offset, SECTOR_SIZE);
int r = 0;
#if __minix_vmd
/* Minix-vmd has a 64 bit seek. */
if (fcntl(device, F_SEEK, off64) < 0) return -1;
#else
/* Minix has to gross things with the partition base. */
struct partition geom0, geom_seek;
if (offset >= (LONG_MAX / SECTOR_SIZE - 1)) {
/* Move partition base. */
if (ioctl(device, DIOCGETP, &geom0) < 0) return -1;
geom_seek.base = add64(geom0.base, off64);
geom_seek.size = cvu64(cmp64(add64u(off64, SECTOR_SIZE),
geom0.size) <= 0 ? _STATIC_BLOCK_SIZE : 0);
sync();
if (ioctl(device, DIOCSETP, &geom_seek) < 0) return -1;
if (lseek(device, (off_t) 0, SEEK_SET) == -1) return -1;
} else {
/* Can reach this point normally. */
if (lseek(device, (off_t) offset * SECTOR_SIZE, SEEK_SET) == -1)
return -1;
}
#endif
switch (rw) {
case 0: r= read(device, bootblock, SECTOR_SIZE); break;
case 1: r= write(device, bootblock, SECTOR_SIZE); break;
}
#if !__minix_vmd
if (offset >= (LONG_MAX / SECTOR_SIZE - 1)) {
/* Restore partition base and size. */
sync();
if (ioctl(device, DIOCSETP, &geom0) < 0) return -1;
}
#endif
return r;
}
int cylinderalign(region_t *reg)
{
if(reg->is_used_part) {
if(reg->used_part.lowsec != table[0].lowsec + sectors
&& (reg->used_part.lowsec % secpcyl)) {
int extra;
extra = secpcyl - (reg->used_part.lowsec % secpcyl);
reg->used_part.lowsec += extra;
reg->used_part.size -= extra;
}
if((reg->used_part.size+1) % secpcyl) {
reg->used_part.size -= secpcyl - ((reg->used_part.size + 1) % secpcyl);
}
return reg->used_part.size > 0;
}
if(reg->free_sec_start != table[0].lowsec + sectors && (reg->free_sec_start % secpcyl)) {
/* Start is unaligned. Round up. */
reg->free_sec_start += secpcyl - (reg->free_sec_start % secpcyl);
}
if((reg->free_sec_last+1) % secpcyl) {
/* End is unaligned. Round down. */
reg->free_sec_last -= (reg->free_sec_last+1) % secpcyl;
}
/* Return nonzero if anything remains of the region after rounding. */
return reg->free_sec_last > reg->free_sec_start;
}
void regionize(void)
{
int free_sec, i, si;
sort();
free_sec = table[0].lowsec + sectors;
/* Create region data used in autopart mode. */
free_regions = used_regions = nr_regions = nr_partitions = 0;
if(table[0].lowsec > table[sort_order[1]].lowsec &&
table[sort_order[1]].sysind != NO_PART) {
printf("\nSanity check failed on %s - first partition starts before disk.\n"
"Please use expert mode to correct it.\n", curdev->name);
exit(1);
}
for(si = 1; si <= NR_PARTITIONS; si++) {
i = sort_order[si];
if(i < 1 || i > NR_PARTITIONS) {
printf("Sorry, something unexpected has happened (%d out of range).\n", i);
exit(1);
}
if(table[i].sysind == NO_PART)
break;
/* Free space before this partition? */
if(table[i].lowsec > free_sec) {
/* Free region before this partition. */
regions[nr_regions].free_sec_start = free_sec;
regions[nr_regions].free_sec_last = table[i].lowsec-1;
regions[nr_regions].is_used_part = 0;
if(cylinderalign(&regions[nr_regions])) {
nr_regions++;
free_regions++;
}
}
/* Sanity check. */
if(si > 1) {
if(table[i].lowsec < table[sort_order[si-1]].lowsec ||
table[i].lowsec < table[sort_order[si-1]].lowsec + table[sort_order[si-1]].size) {
printf("\nSanity check failed on %s - partitions overlap.\n"
"Please use expert mode to correct it.\n", curdev->name);
exit(1);
}
}
if(table[i].size > table[0].size) {
printf("\nSanity check failed on %s - partition is larger than disk.\n"
"Please use expert mode to correct it.\n", curdev->name);
exit(1);
}
if(table[i].size < 1) {
printf("\nSanity check failed on %s - zero-sized partition.\n"
"Please use expert mode to correct it.\n", curdev->name);
exit(1);
}
/* Remember used region. */
memcpy(&regions[nr_regions].used_part, &table[i], sizeof(table[i]));
free_sec = table[i].lowsec+table[i].size;
regions[nr_regions].is_used_part = 1;
regions[nr_regions].tableno = i;
nr_partitions++;
nr_regions++;
used_regions++;
}
/* Special case: space after partitions. */
if(free_sec < table[0].lowsec + table[0].size-1) {
regions[nr_regions].free_sec_start = free_sec;
regions[nr_regions].free_sec_last = table[0].lowsec + table[0].size-1;
regions[nr_regions].is_used_part = 0;
if(cylinderalign(&regions[nr_regions])) {
nr_regions++;
free_regions++;
}
}
}
void m_read(int ev, int *biosdrive)
/* Read the partition table from the current device. */
{
int i, mode, n, v;
struct part_entry *pe;
u32_t system_hz;
if (ev != 'r' || device >= 0) return;
/* Open() may cause kernel messages: */
stat_start(0);
fflush(stdout);
if ((device= open(curdev->name, mode= O_RDWR, 0666)) < 0) {
if (device >= 0) { close(device); device= -1; }
return;
}
if(getsysinfo_up(PM_PROC_NR, SIU_SYSTEMHZ, sizeof(system_hz), &system_hz) < 0) {
fprintf(stderr, "autopart: system hz not found\n");
exit(1);
}
v = 2*system_hz;
ioctl(device, DIOCTIMEOUT, &v);
memset(bootblock, 0, sizeof(bootblock));
n= boot_readwrite(0);
if (n <= 0) stat_start(1);
if (n < 0) {
close(device);
device= -1;
} else
if (n < SECTOR_SIZE) {
close(device);
device= -1;
return;
}
if (n <= 0) stat_end(5);
if (n < SECTOR_SIZE) n= SECTOR_SIZE;
if(biosdrive) (*biosdrive)++;
if(!open_ct_ok(device)) {
printf("\n%s: device in use! skipping it.", curdev->subname);
fflush(stdout);
close(device);
device= -1;
return;
}
memcpy(table+1, bootblock+PART_TABLE_OFF,
NR_PARTITIONS * sizeof(table[1]));
if (bootblock[510] != 0x55 || bootblock[511] != 0xAA) {
/* Invalid boot block, install bootstrap, wipe partition table.
*/
memset(bootblock, 0, sizeof(bootblock));
installboot(bootblock, MASTERBOOT);
memset(table+1, 0, NR_PARTITIONS * sizeof(table[1]));
}
/* Fix an extended partition table up to something mere mortals can
* understand. Record already defined partitions.
*/
for (i= 1; i <= NR_PARTITIONS; i++) {
pe= &table[i];
if (extbase != 0 && pe->sysind != NO_PART)
pe->lowsec+= ext_part(pe->sysind) ? extbase : offset;
existing[i]= pe->sysind != NO_PART;
}
geometry();
dirty= 0;
/* Warn about grave dangers ahead. */
if (extbase != 0) {
stat_start(1);
printf("Warning: You are in an extended partition.");
stat_end(5);
}
regionize();
}
void m_write(int ev, object_t *op)
/* Write the partition table back if modified. */
{
struct part_entry new_table[NR_PARTITIONS], *pe;
if (ev != 'w' && ev != E_WRITE) return;
if (device < 0) { dirty= 0; return; }
if (!dirty) {
if (ev == 'w') {
stat_start(1);
printf("%s is not changed, or has already been written",
curdev->subname);
stat_end(2);
}
return;
}
if (extbase != 0) {
/* Will this stop him? Probably not... */
stat_start(1);
printf("You have changed an extended partition. Bad Idea.");
stat_end(5);
}
memcpy(new_table, table+1, NR_PARTITIONS * sizeof(table[1]));
for (pe= new_table; pe < new_table + NR_PARTITIONS; pe++) {
if (pe->sysind == NO_PART) {
memset(pe, 0, sizeof(*pe));
} else {
abs2dos(&pe->start_head, pe->lowsec);
abs2dos(&pe->last_head, pe->lowsec + pe->size - 1);
/* Fear and loathing time: */
if (extbase != 0)
pe->lowsec-= ext_part(pe->sysind)
? extbase : offset;
}
}
memcpy(bootblock+PART_TABLE_OFF, new_table, sizeof(new_table));
bootblock[510]= 0x55;
bootblock[511]= 0xAA;
if (boot_readwrite(1) < 0) {
stat_start(1);
printf("%s: %s", curdev->name, strerror(errno));
stat_end(5);
return;
}
dirty= 0;
}
void m_shell(int ev, object_t *op)
/* Shell escape, to do calculations for instance. */
{
int r, pid, status;
void (*sigint)(int), (*sigquit)(int), (*sigterm)(int);
if (ev != 's') return;
reset_tty();
fflush(stdout);
switch (pid= fork()) {
case -1:
stat_start(1);
printf("can't fork: %s\n", strerror(errno));
stat_end(3);
break;
case 0:
if (device >= 0) (void) close(device);
execl("/bin/sh", "sh", (char *) nil);
r= errno;
stat_start(1);
printf("/bin/sh: %s\n", strerror(errno));
stat_end(3);
exit(127);
}
sigint= signal(SIGINT, SIG_IGN);
sigquit= signal(SIGQUIT, SIG_IGN);
sigterm= signal(SIGTERM, SIG_IGN);
while (pid >= 0 && (r= wait(&status)) >= 0 && r != pid) {}
(void) signal(SIGINT, sigint);
(void) signal(SIGQUIT, sigquit);
(void) signal(SIGTERM, sigterm);
tty_raw();
if (pid < 0)
;
else
if (WIFEXITED(status) && WEXITSTATUS(status) == 127)
stat_start(0); /* Match the stat_start in the child. */
else
event(ctrl('L'), op);
}
int quitting= 0;
void m_quit(int ev, object_t *op)
/* Write the partition table if modified and exit. */
{
if (ev != 'q' && ev != 'x') return;
quitting= 1;
if (dirty) event(E_WRITE, op);
if (dirty) quitting= 0;
}
void m_help(int ev, object_t *op)
/* For people without a clue; let's hope they can find the '?' key. */
{
static struct help {
char *keys;
char *what;
} help[]= {
{ "? !", "This help / more advice!" },
{ "+ - (= _ PgUp PgDn)","Select/increment/decrement/make active" },
{ "0-9 (a-f)", "Enter value" },
{ "hjkl (arrow keys)", "Move around" },
{ "CTRL-K CTRL-J", "Move entry up/down" },
{ "CTRL-L", "Redraw screen" },
{ ">", "Start a subpartition table" },
{ "<", "Back to the primary partition table" },
{ "m", "Cycle through magic values" },
{ "spacebar", "Show \"Size\" or \"Last\"" },
{ "r w", "Read/write partition table" },
{ "p s q x", "Raw dump / Shell escape / Quit / Exit" },
{ "y n DEL", "Answer \"yes\", \"no\", \"cancel\"" },
};
static char *advice[] = {
"* Choose a disk with '+' and '-', then hit 'r'.",
"* To change any value: Move to it and use '+', '-' or type the desired value.",
"* To make a new partition: Move over to the Size or Kb field of an unused",
" partition and type the size. Hit the 'm' key to pad the partition out to",
" a cylinder boundary. Hit 'm' again to pad it out to the end of the disk.",
" You can hit 'm' more than once on a base or size field to see several",
" interesting values go by. Note: Other Operating Systems can be picky about",
" partitions that are not padded to cylinder boundaries. Look for highlighted",
" head or sector numbers.",
"* To reuse a partition: Change the type to MINIX.",
"* To delete a partition: Type a zero in the hex Type field.",
"* To make a partition active: Type '+' in the Num field.",
"* To study the list of keys: Type '?'.",
};
if (ev == '?') {
struct help *hp;
for (hp= help; hp < arraylimit(help); hp++) {
stat_start(0);
printf("%-25s - %s", hp->keys, hp->what);
stat_end(0);
}
stat_start(0);
putstr("Things like ");
putstr(t_so); putstr("this"); putstr(t_se);
putstr(" must be checked, but ");
putstr(t_md); putstr("this"); putstr(t_me);
putstr(" is not really a problem");
stat_end(0);
} else
if (ev == '!') {
char **ap;
for (ap= advice; ap < arraylimit(advice); ap++) {
stat_start(0);
putstr(*ap);
stat_end(0);
}
}
}
void event(int ev, object_t *op)
/* Simply call all modifiers for an event, each one knows when to act. */
{
m_help(ev, op);
m_redraw(ev, op);
m_toggle(ev, op);
m_orientation(ev, op);
m_move(ev, op);
m_updown(ev, op);
m_enter(ev, op);
m_leave(ev, op);
m_modify(ev, op);
m_magic(ev, op);
m_in(ev, op);
m_out(ev, op);
m_read(ev, NULL);
m_write(ev, op);
m_shell(ev, op);
m_quit(ev, op);
}
char *
prettysizeprint(int kb)
{
int toosmall = 0;
static char str[200];
char unit = 'k';
if(MIN_REGION_SECTORS > kb*2)
toosmall = 1;
if(kb >= 5*1024) {
kb /= 1024;
unit = 'M';
if(kb >= 5*1024) {
kb /= 1024;
unit = 'G';
}
}
sprintf(str, "%4d %cB%s", kb, unit,
toosmall ? ", too small for MINIX 3" : "");
return str;
}
void
printregions(region_t *theregions, int indent, int p_nr_partitions, int p_free_regions, int p_nr_regions, int numbers)
{
int r, nofree = 0;
region_t *reg;
reg = theregions;
if((p_nr_partitions >= NR_PARTITIONS || !p_free_regions) && p_free_regions)
nofree = 1;
for(r = 0; r < p_nr_regions; r++, reg++) {
unsigned long units;
if(reg->is_used_part) {
char *name;
name = typ2txt(reg->used_part.sysind);
printf("%*s", indent, ""); type2col(reg->used_part.sysind);
if(numbers) printf("[%d] ", r);
printf("In use by %-10s ", name);
units = reg->used_part.size / 2;
col(0);
printf(" (%s)\n", prettysizeprint(units));
} else {
printf("%*s", indent, "");
if(numbers) {
if(!nofree) printf("[%d] ", r);
else printf("[-] ");
}
printf("Free space ");
units = ((reg->free_sec_last - reg->free_sec_start+1))/2;
printf(" (%s)\n", prettysizeprint(units));
}
}
if(numbers && p_nr_partitions >= NR_PARTITIONS && p_free_regions) {
printf(
"\nNote: there is free space on this disk, but you can't select it,\n"
"because there isn't a free slot in the partition table to use it.\n"
"You can reclaim the free space by deleting an adjacent region.\n");
}
return;
}
#define IS_YES 3
#define IS_NO 4
#define IS_OTHER 5
int
is_sure(char *fmt, ...)
{
char yesno[10];
va_list ap;
va_start (ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf(" Please enter 'yes' or 'no': ");
fflush(stdout);
if(!fgets(yesno, sizeof(yesno)-1, stdin)) exit(1);
if (strcmp(yesno, "yes\n") == 0) return(IS_YES);
if (strcmp(yesno, "no\n") == 0) return(IS_NO);
return IS_OTHER;
}
void warn(char *message)
{
printf("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b ! %s\n",message);
}
int
may_kill_region(void)
{
int confirmation;
char line[100];
int r, i;
if(used_regions < 1) return 1;
printf("\n -- Delete in-use region? --\n\n");
printregions(regions, 3, nr_partitions, free_regions, nr_regions, 1);
printf("\nEnter the region number to delete or ENTER to continue: ");
fflush(NULL);
fgets(line, sizeof(line)-2, stdin);
if(!isdigit(line[0]))
return 1;
r=atoi(line);
if(r < 0 || r >= nr_regions) {
printf("This choice is out of range.\n");
return 0;
}
if(!regions[r].is_used_part) {
printf("This region is not in use.\n");
return 0;
}
i = regions[r].tableno;
printf("\nPlease confirm that you want to delete region %d, losing all data it", r);
printf("\ncontains. You're disk is not actually updated right away, but still.");
printf("\n\n");
do {
confirmation = is_sure("Are you sure you want to continue?");
if (confirmation == IS_NO) return 0;
} while (confirmation != IS_YES);
table[i].sysind = NO_PART;
dirty = 1;
regionize();
/* User may go again. */
return 0;
}
region_t *
select_region(void)
{
int rn, done = 0;
static char line[100];
int nofree = 0;
printstep(2, "Select a disk region");
if(nr_regions < 1) {
printf("\nNo regions found - maybe the drive is too small.\n"
"Please try expert mode.\n");
exit(1);
}
if(nr_partitions >= NR_PARTITIONS || !free_regions) {
if(free_regions) {
nofree = 1;
}
}
printf("\nPlease select the region that you want to use for the MINIX 3 setup.");
printf("\nIf you select an in-use region it will be overwritten by MINIX. The");
printf("\nfollowing region%s were found on the selected disk:\n\n",
SORNOT(nr_regions));
printregions(regions, 3, nr_partitions, free_regions, nr_regions, 1);
printf("\n");
do {
printf("Enter the region number to use or type 'delete': ");
if(nr_regions == 1) printf(" [0] ");
fflush(NULL);
if(!fgets(line, sizeof(line)-2, stdin))
exit(1);
if (nr_regions == 1 && line[0] == '\n') {
rn = 0;
done = 1;
}
else {
if(strcmp(line,"delete\n") == 0) {
may_kill_region();
return NULL;
}
if(sscanf(line, "%d", &rn) != 1) {
warn("invalid choice");
continue;
}
if(rn < 0 || rn >= nr_regions) {
warn("out of range");
continue;
}
if(nofree && !regions[rn].is_used_part) {
warn("not available");
continue;
}
done = 1;
}
} while(! done);
return(&regions[rn]);
}
void printstep(int step, char *str)
{
int n;
n = printf("\n --- Substep 3.%d: %s ---", step, str);
while(n++ < 73) printf("-");
printf("\n");
}
device_t *
select_disk(void)
{
int done = 0;
int i, choice, drives;
static char line[500];
int biosdrive = 0;
printstep(1, "Select a disk to install MINIX 3");
printf("\nProbing for disks. This may take a short while.");
i = 0;
curdev=firstdev;
for(; i < MAX_DEVICES;) {
printf(".");
fflush(stdout);
m_read('r', &biosdrive);
if(device >= 0) {
devices[i].dev = curdev;
devices[i].free_regions = free_regions;
devices[i].nr_regions = nr_regions;
devices[i].nr_partitions = nr_partitions;
devices[i].used_regions = used_regions;
devices[i].sectors = table[0].size;
curdev->biosdrive = biosdrive-1;
memcpy(devices[i].regions, regions, sizeof(regions));
i++;
}
nextdevice(NULL, 1);
if(curdev == firstdev)
break;
}
drives = i;
if(drives < 1) {
printf("\nFound no drives - can't partition.\n");
exit(1);
}
printf(" Probing done.\n");
printf("The following disk%s %s found on your system:\n\n", SORNOT(drives),
drives == 1 ? "was" : "were");
for(i = 0; i < drives; i++) {
printf(" ");
printf("Disk [%d]: ", i);
printf("%s, ", devices[i].dev->name);
printf("%s\n", prettysizeprint(devices[i].sectors/2));
printregions(devices[i].regions, 8,
devices[i].nr_partitions,
devices[i].free_regions,
devices[i].nr_regions, 0);
}
printf("\n");
do {
printf("Enter the disk number to use: ");
if (drives == 1) printf("[0] ");
fflush(NULL);
if(!fgets(line, sizeof(line)-2, stdin))
exit(1);
if (line[0] == '\n' && drives == 1) {
choice = 0;
done = 1;
} else {
if(sscanf(line, "%d", &choice) != 1) {
warn("choose a disk");
continue;
}
if(choice < 0 || choice >= i) {
warn("out of range");
continue;
}
done = 1;
}
} while(! done);
return devices[choice].dev;
}
int
scribble_region(region_t *reg, struct part_entry **pe, int *made_new)
{
int ex, changed = 0, i;
struct part_entry *newpart;
if(!reg->is_used_part) {
ex = reg->free_sec_last - reg->free_sec_start + 1;
if(made_new) *made_new = 1;
} else if(made_new) *made_new = 0;
if(!reg->is_used_part) {
for(i = 1; i <= NR_PARTITIONS; i++)
if(table[i].sysind == NO_PART)
break;
if(i > NR_PARTITIONS) {
/* Bug, should've been caught earlier. */
printf("Couldn't find a free slot. Please try expert mode.\n");
exit(1);
}
newpart = &table[i];
newpart->lowsec = reg->free_sec_start;
newpart->size = reg->free_sec_last - reg->free_sec_start + 1;
changed = 1;
newpart->sysind = MINIX_PART;
} else {
newpart = &reg->used_part;
}
*pe = newpart;
changed = 1;
dirty = 1;
return changed;
}
int
sanitycheck_failed(char *dev, struct part_entry *pe)
{
struct partition part;
int fd;
unsigned long it_lowsec, it_secsize;
if((fd = open(dev, O_RDONLY)) < 0) {
perror(dev);
return 1;
}
if (ioctl(fd, DIOCGETP, &part) < 0) {
fprintf(stderr, "DIOCGETP failed\n");
perror(dev);
return 1;
}
if(!open_ct_ok(fd)) {
printf("\nAutopart error: the disk is in use. This means that although a\n"
"new table has been written, it won't be in use by the system\n"
"until it's no longer in use (or a reboot is done). Just in case,\n"
"I'm not going to continue. Please un-use the disk (or reboot) and try\n"
"again.\n\n");
return 1;
}
close(fd);
it_lowsec = div64u(part.base, SECTOR_SIZE);
it_secsize = div64u(part.size, SECTOR_SIZE);
if(it_lowsec != pe->lowsec || it_secsize != pe->size) {
fprintf(stderr, "\nReturned and set numbers don't match up!\n");
fprintf(stderr, "This can happen if the disk is still opened.\n");
return 1;
}
return 0;
}
int
do_autopart(int resultfd)
{
int confirmation;
region_t *r;
struct part_entry *pe;
struct part_entry orig_table[1 + NR_PARTITIONS];
int region, newp;
nordonly = 1;
do {
curdev = select_disk();
} while(!curdev);
if(device >= 0) {
close(device);
device = -1;
}
recompute0();
m_read('r', NULL);
memcpy(orig_table, table, sizeof(table));
do {
/* Show regions. */
r = select_region();
} while(!r); /* Back to step 2. */
/* Write things. */
if(scribble_region(r, &pe, &newp)) {
char *name;
int i, found = -1;
char partbuf[100], devname[100];
struct part_entry *tpe = NULL;
printstep(3, "Confirm your choices");
region = (int)(r-regions);
/* disk = (int) (curdev-devices); */
printf("\nThis is the point of no return. You have selected to install MINIX 3\n");
printf("into region %d of disk %s. Please confirm that you want\n",
region, curdev->name);
printf("to use this selection to install MINIX 3.\n\n");
do {
confirmation = is_sure("Are you sure you want to continue?");
if (confirmation == IS_NO) return 1;
} while (confirmation != IS_YES);
/* Retrieve partition number in sorted order that we
* have scribbled in.
*/
sort();
for(i = 1; i <= NR_PARTITIONS; i++) {
int si;
si = sort_order[i];
if(si < 1 || si > NR_PARTITIONS) {
fprintf(stderr, "Autopart internal error (out of range) (nothing written).\n");
exit(1);
}
if(table[si].lowsec == pe->lowsec) {
if(found > 0) {
fprintf(stderr, "Autopart internal error (part found twice) (nothing written).\n");
exit(1);
}
check_ind(&table[si]);
table[si].sysind = MINIX_PART;
found = i;
tpe = &table[si];
}
}
if(found < 1) {
fprintf(stderr, "Autopart internal error (part not found) (nothing written).\n");
exit(1);
}
m_write('w', NULL);
if(dirty) {
fprintf(stderr, "Autopart internal error (couldn't update disk).\n");
exit(1);
}
name=strrchr(curdev->name, '/');
if(!name) name = curdev->name;
else name++;
sprintf(partbuf, "%sp%d d%dp%d\n", name, found-1,
curdev->biosdrive, found-1);
sprintf(devname, "/dev/%sp%d", name, found-1);
if(resultfd >= 0 && write(resultfd, partbuf, strlen(partbuf)) < strlen(partbuf)) {
fprintf(stderr, "Autopart internal error (couldn't write result).\n");
exit(1);
}
if(device >= 0) {
close(device);
device = -1;
}
#if 0
m_dump(orig_table);
printf("\n");
m_dump(table);
#endif
if(sanitycheck_failed(devname, tpe)) {
fprintf(stderr, "Autopart internal error (disk sanity check failed).\n");
exit(1);
}
if(newp) {
int fd;
if((fd=open(devname, O_WRONLY)) < 0) {
perror(devname);
} else {
/* Clear any subpartitioning. */
static unsigned char sub[2048];
sub[510] = 0x55;
sub[511] = 0xAA;
write(fd, sub, sizeof(sub));
close(fd);
}
}
return 0;
}
return 1;
}
int main(int argc, char **argv)
{
int c;
int i, key;
int resultfd = -1;
/* autopart uses getopt() */
while((c = getopt(argc, argv, "m:f:")) != EOF) {
switch(c) {
case 'm':
min_region_mb = atoi(optarg);
break;
case 'f':
/* Make sure old data file is gone. */
unlink(optarg);
if((resultfd=open(optarg, O_CREAT | O_WRONLY | O_TRUNC)) < 0) {
perror(optarg);
return 1;
}
sync(); /* Make sure no old data file lingers. */
break;
default:
fprintf(stderr, "Unknown option\n");
return 1;
}
}
argc -= optind;
argv += optind;
for (i= 0; i < argc; i++) {
newdevice(argv[i], 0, 0);
}
if (firstdev == nil) {
getdevices();
key= ctrl('L');
} else {
key= 'r';
}
{
int r;
if (firstdev == nil) {
fprintf(stderr, "autopart couldn't find any devices.\n");
return 1;
}
r = do_autopart(resultfd);
if(resultfd >= 0) { close(resultfd); }
return r;
}
exit(0);
}