minix/sys/ufs/chfs/chfs_gc.c
Lionel Sambuc 84d9c625bf Synchronize on NetBSD-CVS (2013/12/1 12:00:00 UTC)
- Fix for possible unset uid/gid in toproto
 - Fix for default mtree style
 - Update libelf
 - Importing libexecinfo
 - Resynchronize GCC, mpc, gmp, mpfr
 - build.sh: Replace params with show-params.
     This has been done as the make target has been renamed in the same
     way, while a new target named params has been added. This new
     target generates a file containing all the parameters, instead of
     printing it on the console.
 - Update test48 with new etc/services (Fix by Ben Gras <ben@minix3.org)
     get getservbyport() out of the inner loop

Change-Id: Ie6ad5226fa2621ff9f0dee8782ea48f9443d2091
2014-07-28 17:05:06 +02:00

1163 lines
30 KiB
C

/* $NetBSD: chfs_gc.c,v 1.5 2013/10/20 17:18:38 christos Exp $ */
/*-
* Copyright (c) 2010 Department of Software Engineering,
* University of Szeged, Hungary
* Copyright (c) 2010 Tamas Toth <ttoth@inf.u-szeged.hu>
* Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by the Department of Software Engineering, University of Szeged, Hungary
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "chfs.h"
void chfs_gc_release_inode(struct chfs_mount *,
struct chfs_inode *);
struct chfs_inode *chfs_gc_fetch_inode(struct chfs_mount *,
ino_t, uint32_t);
int chfs_check(struct chfs_mount *, struct chfs_vnode_cache *);
void chfs_clear_inode(struct chfs_mount *, struct chfs_inode *);
struct chfs_eraseblock *find_gc_block(struct chfs_mount *);
int chfs_gcollect_pristine(struct chfs_mount *,
struct chfs_eraseblock *,
struct chfs_vnode_cache *, struct chfs_node_ref *);
int chfs_gcollect_live(struct chfs_mount *,
struct chfs_eraseblock *, struct chfs_node_ref *,
struct chfs_inode *);
int chfs_gcollect_vnode(struct chfs_mount *, struct chfs_inode *);
int chfs_gcollect_dirent(struct chfs_mount *,
struct chfs_eraseblock *, struct chfs_inode *,
struct chfs_dirent *);
int chfs_gcollect_deletion_dirent(struct chfs_mount *,
struct chfs_eraseblock *, struct chfs_inode *,
struct chfs_dirent *);
int chfs_gcollect_dnode(struct chfs_mount *,
struct chfs_eraseblock *, struct chfs_inode *,
struct chfs_full_dnode *, uint32_t, uint32_t);
/*
* chfs_gc_trigger - wakes up GC thread, if it should run
* Must be called with chm_lock_mountfields held.
*/
void
chfs_gc_trigger(struct chfs_mount *chmp)
{
struct garbage_collector_thread *gc = &chmp->chm_gc_thread;
if (gc->gcth_running &&
chfs_gc_thread_should_wake(chmp)) {
cv_signal(&gc->gcth_wakeup);
}
}
/* chfs_gc_thread - garbage collector's thread */
void
chfs_gc_thread(void *data)
{
struct chfs_mount *chmp = data;
struct garbage_collector_thread *gc = &chmp->chm_gc_thread;
dbg_gc("[GC THREAD] thread started\n");
mutex_enter(&chmp->chm_lock_mountfields);
while (gc->gcth_running) {
/* we must call chfs_gc_thread_should_wake with chm_lock_mountfields
* held, which is a bit awkwardly done here, but we cant relly
* do it otherway with the current design...
*/
if (chfs_gc_thread_should_wake(chmp)) {
if (chfs_gcollect_pass(chmp) == ENOSPC) {
mutex_exit(&chmp->chm_lock_mountfields);
panic("No space for garbage collection\n");
/* XXX why break here? i have added a panic
* here to see if it gets triggered -ahoka
*/
break;
}
/* XXX gcollect_pass drops the mutex */
}
cv_timedwait_sig(&gc->gcth_wakeup,
&chmp->chm_lock_mountfields, mstohz(100));
}
mutex_exit(&chmp->chm_lock_mountfields);
dbg_gc("[GC THREAD] thread stopped\n");
kthread_exit(0);
}
/* chfs_gc_thread_start - starts GC */
void
chfs_gc_thread_start(struct chfs_mount *chmp)
{
struct garbage_collector_thread *gc = &chmp->chm_gc_thread;
cv_init(&gc->gcth_wakeup, "chfsgccv");
gc->gcth_running = true;
kthread_create(PRI_NONE, /*KTHREAD_MPSAFE |*/ KTHREAD_MUSTJOIN,
NULL, chfs_gc_thread, chmp, &gc->gcth_thread,
"chfsgcth");
}
/* chfs_gc_thread_start - stops GC */
void
chfs_gc_thread_stop(struct chfs_mount *chmp)
{
struct garbage_collector_thread *gc = &chmp->chm_gc_thread;
/* check if it is actually running */
if (gc->gcth_running) {
gc->gcth_running = false;
} else {
return;
}
cv_signal(&gc->gcth_wakeup);
dbg_gc("[GC THREAD] stop signal sent\n");
kthread_join(gc->gcth_thread);
#ifdef BROKEN_KTH_JOIN
kpause("chfsthjoin", false, mstohz(1000), NULL);
#endif
cv_destroy(&gc->gcth_wakeup);
}
/*
* chfs_gc_thread_should_wake - checks if GC thread should wake up
* Must be called with chm_lock_mountfields held.
* Returns 1, if GC should wake up and 0 else.
*/
int
chfs_gc_thread_should_wake(struct chfs_mount *chmp)
{
int nr_very_dirty = 0;
struct chfs_eraseblock *cheb;
uint32_t dirty;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
/* Erase pending queue is not empty. */
if (!TAILQ_EMPTY(&chmp->chm_erase_pending_queue)) {
dbg_gc("erase_pending\n");
return 1;
}
/* There is something unchecked in the filesystem. */
if (chmp->chm_unchecked_size) {
dbg_gc("unchecked\n");
return 1;
}
dirty = chmp->chm_dirty_size - chmp->chm_nr_erasable_blocks *
chmp->chm_ebh->eb_size;
/* Number of free and erasable blocks are critical. */
if (chmp->chm_nr_free_blocks + chmp->chm_nr_erasable_blocks <
chmp->chm_resv_blocks_gctrigger && (dirty > chmp->chm_nospc_dirty)) {
dbg_gc("free: %d + erasable: %d < resv: %d\n",
chmp->chm_nr_free_blocks, chmp->chm_nr_erasable_blocks,
chmp->chm_resv_blocks_gctrigger);
dbg_gc("dirty: %d > nospc_dirty: %d\n",
dirty, chmp->chm_nospc_dirty);
return 1;
}
/* There is too much very dirty blocks. */
TAILQ_FOREACH(cheb, &chmp->chm_very_dirty_queue, queue) {
nr_very_dirty++;
if (nr_very_dirty == chmp->chm_vdirty_blocks_gctrigger) {
dbg_gc("nr_very_dirty\n");
return 1;
}
}
/* Everythin OK, GC shouldn't run. */
return 0;
}
/* chfs_gc_release_inode - does nothing yet */
void
chfs_gc_release_inode(struct chfs_mount *chmp,
struct chfs_inode *ip)
{
dbg_gc("release inode\n");
}
/* chfs_gc_fetch_inode - assign the given inode to the GC */
struct chfs_inode *
chfs_gc_fetch_inode(struct chfs_mount *chmp, ino_t vno,
uint32_t unlinked)
{
struct vnode *vp = NULL;
struct chfs_vnode_cache *vc;
struct chfs_inode *ip;
dbg_gc("fetch inode %llu\n", (unsigned long long)vno);
if (unlinked) {
dbg_gc("unlinked\n");
vp = chfs_vnode_lookup(chmp, vno);
if (!vp) {
mutex_enter(&chmp->chm_lock_vnocache);
vc = chfs_vnode_cache_get(chmp, vno);
if (!vc) {
mutex_exit(&chmp->chm_lock_vnocache);
return NULL;
}
if (vc->state != VNO_STATE_CHECKEDABSENT) {
mutex_exit(&chmp->chm_lock_vnocache);
/* XXX why do we need the delay here?! */
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
cv_timedwait_sig(
&chmp->chm_gc_thread.gcth_wakeup,
&chmp->chm_lock_mountfields, mstohz(50));
} else {
mutex_exit(&chmp->chm_lock_vnocache);
}
return NULL;
}
} else {
dbg_gc("vnode lookup\n");
vp = chfs_vnode_lookup(chmp, vno);
}
dbg_gc("vp to ip\n");
ip = VTOI(vp);
KASSERT(ip);
return ip;
}
extern rb_tree_ops_t frag_rbtree_ops;
/* chfs_check - checks an inode with minimal initialization */
int
chfs_check(struct chfs_mount *chmp, struct chfs_vnode_cache *chvc)
{
KASSERT(mutex_owned(&chmp->chm_lock_vnocache));
struct chfs_inode *ip;
struct vnode *vp;
int ret;
/* Get a new inode. */
ip = pool_get(&chfs_inode_pool, PR_WAITOK);
if (!ip) {
return ENOMEM;
}
vp = kmem_zalloc(sizeof(struct vnode), KM_SLEEP);
/* Minimal initialization. */
ip->chvc = chvc;
ip->vp = vp;
vp->v_data = ip;
rb_tree_init(&ip->fragtree, &frag_rbtree_ops);
TAILQ_INIT(&ip->dents);
/* Build the node. */
mutex_exit(&chmp->chm_lock_vnocache);
ret = chfs_read_inode_internal(chmp, ip);
mutex_enter(&chmp->chm_lock_vnocache);
if (!ret) {
chfs_clear_inode(chmp, ip);
}
/* Release inode. */
pool_put(&chfs_inode_pool, ip);
return ret;
}
/* chfs_clear_inode - kills a minimal inode */
void
chfs_clear_inode(struct chfs_mount *chmp, struct chfs_inode *ip)
{
KASSERT(mutex_owned(&chmp->chm_lock_vnocache));
struct chfs_dirent *fd, *tmpfd;
struct chfs_vnode_cache *chvc;
struct chfs_node_ref *nref;
chvc = ip->chvc;
/* shouldnt this be: */
//bool deleted = (chvc && !(chvc->pvno || chvc->nlink));
int deleted = (chvc && !(chvc->pvno | chvc->nlink));
/* Set actual state. */
if (chvc && chvc->state != VNO_STATE_CHECKING) {
chvc->state = VNO_STATE_CLEARING;
}
/* Remove vnode information. */
while (deleted && chvc->v != (struct chfs_node_ref *)chvc) {
nref = chvc->v;
chfs_remove_and_obsolete(chmp, chvc, nref, &chvc->v);
}
/* Destroy data. */
chfs_kill_fragtree(chmp, &ip->fragtree);
/* Clear dirents. */
TAILQ_FOREACH_SAFE(fd, &ip->dents, fds, tmpfd) {
chfs_free_dirent(fd);
}
/* Remove node from vnode cache. */
if (chvc && chvc->state == VNO_STATE_CHECKING) {
chvc->state = VNO_STATE_CHECKEDABSENT;
if ((struct chfs_vnode_cache *)chvc->v == chvc &&
(struct chfs_vnode_cache *)chvc->dirents == chvc &&
(struct chfs_vnode_cache *)chvc->dnode == chvc)
chfs_vnode_cache_remove(chmp, chvc);
}
}
/* find_gc_block - finds the next block for GC */
struct chfs_eraseblock *
find_gc_block(struct chfs_mount *chmp)
{
struct chfs_eraseblock *ret;
struct chfs_eraseblock_queue *nextqueue;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
/* Get a random number. */
struct timespec now;
vfs_timestamp(&now);
int n = now.tv_nsec % 128;
again:
/* Find an eraseblock queue. */
if (n<50 && !TAILQ_EMPTY(&chmp->chm_erase_pending_queue)) {
dbg_gc("Picking block from erase_pending_queue to GC next\n");
nextqueue = &chmp->chm_erase_pending_queue;
} else if (n<110 && !TAILQ_EMPTY(&chmp->chm_very_dirty_queue) ) {
dbg_gc("Picking block from very_dirty_queue to GC next\n");
nextqueue = &chmp->chm_very_dirty_queue;
} else if (n<126 && !TAILQ_EMPTY(&chmp->chm_dirty_queue) ) {
dbg_gc("Picking block from dirty_queue to GC next\n");
nextqueue = &chmp->chm_dirty_queue;
} else if (!TAILQ_EMPTY(&chmp->chm_clean_queue)) {
dbg_gc("Picking block from clean_queue to GC next\n");
nextqueue = &chmp->chm_clean_queue;
} else if (!TAILQ_EMPTY(&chmp->chm_dirty_queue)) {
dbg_gc("Picking block from dirty_queue to GC next"
" (clean_queue was empty)\n");
nextqueue = &chmp->chm_dirty_queue;
} else if (!TAILQ_EMPTY(&chmp->chm_very_dirty_queue)) {
dbg_gc("Picking block from very_dirty_queue to GC next"
" (clean_queue and dirty_queue were empty)\n");
nextqueue = &chmp->chm_very_dirty_queue;
} else if (!TAILQ_EMPTY(&chmp->chm_erase_pending_queue)) {
dbg_gc("Picking block from erase_pending_queue to GC next"
" (clean_queue and {very_,}dirty_queue were empty)\n");
nextqueue = &chmp->chm_erase_pending_queue;
} else if (!TAILQ_EMPTY(&chmp->chm_erasable_pending_wbuf_queue)) {
dbg_gc("Synching wbuf in order to reuse "
"erasable_pendig_wbuf_queue blocks\n");
rw_enter(&chmp->chm_lock_wbuf, RW_WRITER);
chfs_flush_pending_wbuf(chmp);
rw_exit(&chmp->chm_lock_wbuf);
goto again;
} else {
dbg_gc("CHFS: no clean, dirty _or_ erasable"
" blocks to GC from! Where are they all?\n");
return NULL;
}
/* Get the first block of the queue. */
ret = TAILQ_FIRST(nextqueue);
if (chmp->chm_nextblock) {
dbg_gc("nextblock num: %u - gcblock num: %u\n",
chmp->chm_nextblock->lnr, ret->lnr);
if (ret == chmp->chm_nextblock)
goto again;
}
TAILQ_REMOVE(nextqueue, ret, queue);
/* Set GC block. */
chmp->chm_gcblock = ret;
/* Set GC node. */
ret->gc_node = ret->first_node;
if (!ret->gc_node) {
dbg_gc("Oops! ret->gc_node at LEB: %u is NULL\n", ret->lnr);
panic("CHFS BUG - one LEB's gc_node is NULL\n");
}
/* TODO wasted size? */
return ret;
}
/* chfs_gcollect_pass - this is the main function of GC */
int
chfs_gcollect_pass(struct chfs_mount *chmp)
{
struct chfs_vnode_cache *vc;
struct chfs_eraseblock *eb;
struct chfs_node_ref *nref;
uint32_t gcblock_dirty;
struct chfs_inode *ip;
ino_t vno, pvno;
uint32_t nlink;
int ret = 0;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
/* Check all vnodes. */
for (;;) {
mutex_enter(&chmp->chm_lock_sizes);
/* Check unchecked size. */
dbg_gc("unchecked size == %u\n", chmp->chm_unchecked_size);
if (!chmp->chm_unchecked_size)
break;
/* Compare vnode number to the maximum. */
if (chmp->chm_checked_vno > chmp->chm_max_vno) {
mutex_exit(&chmp->chm_lock_sizes);
dbg_gc("checked_vno (#%llu) > max_vno (#%llu)\n",
(unsigned long long)chmp->chm_checked_vno,
(unsigned long long)chmp->chm_max_vno);
return ENOSPC;
}
mutex_exit(&chmp->chm_lock_sizes);
mutex_enter(&chmp->chm_lock_vnocache);
dbg_gc("checking vno #%llu\n",
(unsigned long long)chmp->chm_checked_vno);
dbg_gc("get vnode cache\n");
/* OK, Get and check the vnode cache. */
vc = chfs_vnode_cache_get(chmp, chmp->chm_checked_vno++);
if (!vc) {
dbg_gc("!vc\n");
mutex_exit(&chmp->chm_lock_vnocache);
continue;
}
if ((vc->pvno | vc->nlink) == 0) {
dbg_gc("(pvno | nlink) == 0\n");
mutex_exit(&chmp->chm_lock_vnocache);
continue;
}
/* Find out the state of the vnode. */
dbg_gc("switch\n");
switch (vc->state) {
case VNO_STATE_CHECKEDABSENT:
/* FALLTHROUGH */
case VNO_STATE_PRESENT:
mutex_exit(&chmp->chm_lock_vnocache);
continue;
case VNO_STATE_GC:
/* FALLTHROUGH */
case VNO_STATE_CHECKING:
mutex_exit(&chmp->chm_lock_vnocache);
dbg_gc("VNO_STATE GC or CHECKING\n");
panic("CHFS BUG - vc state gc or checking\n");
case VNO_STATE_READING:
chmp->chm_checked_vno--;
mutex_exit(&chmp->chm_lock_vnocache);
/* XXX why do we need the delay here?! */
kpause("chvncrea", true, mstohz(50), NULL);
return 0;
default:
mutex_exit(&chmp->chm_lock_vnocache);
dbg_gc("default\n");
panic("CHFS BUG - vc state is other what we"
" checked\n");
case VNO_STATE_UNCHECKED:
;
}
/* We found an unchecked vnode. */
vc->state = VNO_STATE_CHECKING;
/* XXX check if this is too heavy to call under
* chm_lock_vnocache
*/
ret = chfs_check(chmp, vc);
vc->state = VNO_STATE_CHECKEDABSENT;
mutex_exit(&chmp->chm_lock_vnocache);
return ret;
}
/* Get GC block. */
eb = chmp->chm_gcblock;
if (!eb) {
eb = find_gc_block(chmp);
}
if (!eb) {
dbg_gc("!eb\n");
if (!TAILQ_EMPTY(&chmp->chm_erase_pending_queue)) {
mutex_exit(&chmp->chm_lock_sizes);
return EAGAIN;
}
mutex_exit(&chmp->chm_lock_sizes);
return EIO;
}
if (!eb->used_size) {
dbg_gc("!eb->used_size\n");
goto eraseit;
}
/* Get GC node. */
nref = eb->gc_node;
gcblock_dirty = eb->dirty_size;
/* Find a node which wasn't obsoleted yet.
* Obsoleted nodes will be simply deleted after the whole block has checked. */
while(CHFS_REF_OBSOLETE(nref)) {
#ifdef DBG_MSG_GC
if (nref == chmp->chm_blocks[nref->nref_lnr].last_node) {
dbg_gc("THIS NODE IS THE LAST NODE OF ITS EB\n");
}
#endif
nref = node_next(nref);
if (!nref) {
eb->gc_node = nref;
mutex_exit(&chmp->chm_lock_sizes);
panic("CHFS BUG - nref is NULL)\n");
}
}
/* We found a "not obsoleted" node. */
eb->gc_node = nref;
KASSERT(nref->nref_lnr == chmp->chm_gcblock->lnr);
/* Check if node is in any chain. */
if (!nref->nref_next) {
/* This node is not in any chain. Simply collect it, or obsolete. */
mutex_exit(&chmp->chm_lock_sizes);
if (CHFS_REF_FLAGS(nref) == CHFS_PRISTINE_NODE_MASK) {
chfs_gcollect_pristine(chmp, eb, NULL, nref);
} else {
chfs_mark_node_obsolete(chmp, nref);
}
goto lock_size;
}
mutex_exit(&chmp->chm_lock_sizes);
mutex_enter(&chmp->chm_lock_vnocache);
dbg_gc("nref lnr: %u - offset: %u\n", nref->nref_lnr, nref->nref_offset);
vc = chfs_nref_to_vc(nref);
/* Check the state of the node. */
dbg_gc("switch\n");
switch(vc->state) {
case VNO_STATE_CHECKEDABSENT:
if (CHFS_REF_FLAGS(nref) == CHFS_PRISTINE_NODE_MASK) {
vc->state = VNO_STATE_GC;
}
break;
case VNO_STATE_PRESENT:
break;
case VNO_STATE_UNCHECKED:
/* FALLTHROUGH */
case VNO_STATE_CHECKING:
/* FALLTHROUGH */
case VNO_STATE_GC:
mutex_exit(&chmp->chm_lock_vnocache);
panic("CHFS BUG - vc state unchecked,"
" checking or gc (vno #%llu, num #%d)\n",
(unsigned long long)vc->vno, vc->state);
case VNO_STATE_READING:
/* Node is in use at this time. */
mutex_exit(&chmp->chm_lock_vnocache);
kpause("chvncrea", true, mstohz(50), NULL);
return 0;
}
if (vc->state == VNO_STATE_GC) {
dbg_gc("vc->state == VNO_STATE_GC\n");
vc->state = VNO_STATE_CHECKEDABSENT;
mutex_exit(&chmp->chm_lock_vnocache);
ret = chfs_gcollect_pristine(chmp, eb, NULL, nref);
//TODO wake_up(&chmp->chm_vnocache_wq);
if (ret != EBADF)
goto test_gcnode;
mutex_enter(&chmp->chm_lock_vnocache);
}
/* Collect living node. */
vno = vc->vno;
pvno = vc->pvno;
nlink = vc->nlink;
mutex_exit(&chmp->chm_lock_vnocache);
ip = chfs_gc_fetch_inode(chmp, vno, !(pvno | nlink));
if (!ip) {
dbg_gc("!ip\n");
ret = 0;
goto lock_size;
}
chfs_gcollect_live(chmp, eb, nref, ip);
chfs_gc_release_inode(chmp, ip);
test_gcnode:
if (eb->dirty_size == gcblock_dirty &&
!CHFS_REF_OBSOLETE(eb->gc_node)) {
dbg_gc("ERROR collecting node at %u failed.\n",
CHFS_GET_OFS(eb->gc_node->nref_offset));
ret = ENOSPC;
}
lock_size:
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
mutex_enter(&chmp->chm_lock_sizes);
eraseit:
dbg_gc("eraseit\n");
if (chmp->chm_gcblock) {
/* This is only for debugging. */
dbg_gc("eb used size = %u\n", chmp->chm_gcblock->used_size);
dbg_gc("eb free size = %u\n", chmp->chm_gcblock->free_size);
dbg_gc("eb dirty size = %u\n", chmp->chm_gcblock->dirty_size);
dbg_gc("eb unchecked size = %u\n",
chmp->chm_gcblock->unchecked_size);
dbg_gc("eb wasted size = %u\n", chmp->chm_gcblock->wasted_size);
KASSERT(chmp->chm_gcblock->used_size + chmp->chm_gcblock->free_size +
chmp->chm_gcblock->dirty_size +
chmp->chm_gcblock->unchecked_size +
chmp->chm_gcblock->wasted_size == chmp->chm_ebh->eb_size);
}
/* Check the state of GC block. */
if (chmp->chm_gcblock && chmp->chm_gcblock->dirty_size +
chmp->chm_gcblock->wasted_size == chmp->chm_ebh->eb_size) {
dbg_gc("Block at leb #%u completely obsoleted by GC, "
"Moving to erase_pending_queue\n", chmp->chm_gcblock->lnr);
TAILQ_INSERT_TAIL(&chmp->chm_erase_pending_queue,
chmp->chm_gcblock, queue);
chmp->chm_gcblock = NULL;
chmp->chm_nr_erasable_blocks++;
if (!TAILQ_EMPTY(&chmp->chm_erase_pending_queue)) {
ret = chfs_remap_leb(chmp);
}
}
mutex_exit(&chmp->chm_lock_sizes);
dbg_gc("return\n");
return ret;
}
/* chfs_gcollect_pristine - collects a pristine node */
int
chfs_gcollect_pristine(struct chfs_mount *chmp, struct chfs_eraseblock *cheb,
struct chfs_vnode_cache *chvc, struct chfs_node_ref *nref)
{
struct chfs_node_ref *newnref;
struct chfs_flash_node_hdr *nhdr;
struct chfs_flash_vnode *fvnode;
struct chfs_flash_dirent_node *fdirent;
struct chfs_flash_data_node *fdata;
int ret, retries = 0;
uint32_t ofs, crc;
size_t totlen = chfs_nref_len(chmp, cheb, nref);
char *data;
struct iovec vec;
size_t retlen;
dbg_gc("gcollect_pristine\n");
data = kmem_alloc(totlen, KM_SLEEP);
if (!data)
return ENOMEM;
ofs = CHFS_GET_OFS(nref->nref_offset);
/* Read header. */
ret = chfs_read_leb(chmp, nref->nref_lnr, data, ofs, totlen, &retlen);
if (ret) {
dbg_gc("reading error\n");
return ret;
}
if (retlen != totlen) {
dbg_gc("read size error\n");
return EIO;
}
nhdr = (struct chfs_flash_node_hdr *)data;
/* Check the header. */
if (le16toh(nhdr->magic) != CHFS_FS_MAGIC_BITMASK) {
dbg_gc("node header magic number error\n");
return EBADF;
}
crc = crc32(0, (uint8_t *)nhdr, CHFS_NODE_HDR_SIZE - 4);
if (crc != le32toh(nhdr->hdr_crc)) {
dbg_gc("node header crc error\n");
return EBADF;
}
/* Read the remaining parts. */
switch(le16toh(nhdr->type)) {
case CHFS_NODETYPE_VNODE:
/* vnode information node */
fvnode = (struct chfs_flash_vnode *)data;
crc = crc32(0, (uint8_t *)fvnode, sizeof(struct chfs_flash_vnode) - 4);
if (crc != le32toh(fvnode->node_crc)) {
dbg_gc("vnode crc error\n");
return EBADF;
}
break;
case CHFS_NODETYPE_DIRENT:
/* dirent node */
fdirent = (struct chfs_flash_dirent_node *)data;
crc = crc32(0, (uint8_t *)fdirent, sizeof(struct chfs_flash_dirent_node) - 4);
if (crc != le32toh(fdirent->node_crc)) {
dbg_gc("dirent crc error\n");
return EBADF;
}
crc = crc32(0, fdirent->name, fdirent->nsize);
if (crc != le32toh(fdirent->name_crc)) {
dbg_gc("dirent name crc error\n");
return EBADF;
}
break;
case CHFS_NODETYPE_DATA:
/* data node */
fdata = (struct chfs_flash_data_node *)data;
crc = crc32(0, (uint8_t *)fdata, sizeof(struct chfs_flash_data_node) - 4);
if (crc != le32toh(fdata->node_crc)) {
dbg_gc("data node crc error\n");
return EBADF;
}
break;
default:
/* unknown node */
if (chvc) {
dbg_gc("unknown node have vnode cache\n");
return EBADF;
}
}
/* CRC's OK, write node to its new place */
retry:
ret = chfs_reserve_space_gc(chmp, totlen);
if (ret)
return ret;
newnref = chfs_alloc_node_ref(chmp->chm_nextblock);
if (!newnref)
return ENOMEM;
ofs = chmp->chm_ebh->eb_size - chmp->chm_nextblock->free_size;
newnref->nref_offset = ofs;
/* write out the whole node */
vec.iov_base = (void *)data;
vec.iov_len = totlen;
mutex_enter(&chmp->chm_lock_sizes);
ret = chfs_write_wbuf(chmp, &vec, 1, ofs, &retlen);
if (ret || retlen != totlen) {
/* error while writing */
chfs_err("error while writing out to the media\n");
chfs_err("err: %d | size: %zu | retlen : %zu\n",
ret, totlen, retlen);
chfs_change_size_dirty(chmp, chmp->chm_nextblock, totlen);
if (retries) {
mutex_exit(&chmp->chm_lock_sizes);
return EIO;
}
/* try again */
retries++;
mutex_exit(&chmp->chm_lock_sizes);
goto retry;
}
/* update vnode information */
mutex_exit(&chmp->chm_lock_sizes);
//TODO should we set free_size?
mutex_enter(&chmp->chm_lock_vnocache);
chfs_add_vnode_ref_to_vc(chmp, chvc, newnref);
mutex_exit(&chmp->chm_lock_vnocache);
return 0;
}
/* chfs_gcollect_live - collects a living node */
int
chfs_gcollect_live(struct chfs_mount *chmp,
struct chfs_eraseblock *cheb, struct chfs_node_ref *nref,
struct chfs_inode *ip)
{
struct chfs_node_frag *frag;
struct chfs_full_dnode *fn = NULL;
int start = 0, end = 0, nrfrags = 0;
struct chfs_dirent *fd = NULL;
int ret = 0;
bool is_dirent;
dbg_gc("gcollect_live\n");
if (chmp->chm_gcblock != cheb) {
dbg_gc("GC block is no longer gcblock. Restart.\n");
goto upnout;
}
if (CHFS_REF_OBSOLETE(nref)) {
dbg_gc("node to be GC'd was obsoleted in the meantime.\n");
goto upnout;
}
/* It's a vnode? */
if (ip->chvc->v == nref) {
chfs_gcollect_vnode(chmp, ip);
goto upnout;
}
/* Find data node. */
dbg_gc("find full dnode\n");
for(frag = frag_first(&ip->fragtree);
frag; frag = frag_next(&ip->fragtree, frag)) {
if (frag->node && frag->node->nref == nref) {
fn = frag->node;
end = frag->ofs + frag->size;
if (!nrfrags++)
start = frag->ofs;
if (nrfrags == frag->node->frags)
break;
}
}
/* It's a pristine node, or dnode (or hole? XXX have we hole nodes?) */
if (fn) {
if (CHFS_REF_FLAGS(nref) == CHFS_PRISTINE_NODE_MASK) {
ret = chfs_gcollect_pristine(chmp,
cheb, ip->chvc, nref);
if (!ret) {
frag->node->nref = ip->chvc->v;
}
if (ret != EBADF)
goto upnout;
}
ret = chfs_gcollect_dnode(chmp, cheb, ip, fn, start, end);
goto upnout;
}
/* Is it a dirent? */
dbg_gc("find full dirent\n");
is_dirent = false;
TAILQ_FOREACH(fd, &ip->dents, fds) {
if (fd->nref == nref) {
is_dirent = true;
break;
}
}
if (is_dirent && fd->vno) {
/* Living dirent. */
ret = chfs_gcollect_dirent(chmp, cheb, ip, fd);
} else if (is_dirent) {
/* Already deleted dirent. */
ret = chfs_gcollect_deletion_dirent(chmp, cheb, ip, fd);
} else {
dbg_gc("Nref at leb #%u offset 0x%08x wasn't in node list"
" for ino #%llu\n",
nref->nref_lnr, CHFS_GET_OFS(nref->nref_offset),
(unsigned long long)ip->ino);
if (CHFS_REF_OBSOLETE(nref)) {
dbg_gc("But it's obsolete so we don't mind"
" too much.\n");
}
}
upnout:
return ret;
}
/* chfs_gcollect_vnode - collects a vnode information node */
int
chfs_gcollect_vnode(struct chfs_mount *chmp, struct chfs_inode *ip)
{
int ret;
dbg_gc("gcollect_vnode\n");
/* Simply write the new vnode information to the flash
* with GC's space allocation */
ret = chfs_write_flash_vnode(chmp, ip, ALLOC_GC);
return ret;
}
/* chfs_gcollect_dirent - collects a dirent */
int
chfs_gcollect_dirent(struct chfs_mount *chmp,
struct chfs_eraseblock *cheb, struct chfs_inode *parent,
struct chfs_dirent *fd)
{
struct vnode *vnode = NULL;
struct chfs_inode *ip;
dbg_gc("gcollect_dirent\n");
/* Find vnode. */
vnode = chfs_vnode_lookup(chmp, fd->vno);
/* XXX maybe KASSERT or panic on this? */
if (vnode == NULL) {
return ENOENT;
}
ip = VTOI(vnode);
/* Remove and obsolete the previous version. */
mutex_enter(&chmp->chm_lock_vnocache);
chfs_remove_and_obsolete(chmp, parent->chvc, fd->nref,
&parent->chvc->dirents);
mutex_exit(&chmp->chm_lock_vnocache);
/* Write the new dirent to the flash. */
return chfs_write_flash_dirent(chmp,
parent, ip, fd, fd->vno, ALLOC_GC);
}
/*
* chfs_gcollect_deletion_dirent -
* collects a dirent what was marked as deleted
*/
int
chfs_gcollect_deletion_dirent(struct chfs_mount *chmp,
struct chfs_eraseblock *cheb, struct chfs_inode *parent,
struct chfs_dirent *fd)
{
struct chfs_flash_dirent_node chfdn;
struct chfs_node_ref *nref;
size_t retlen, name_len, nref_len;
uint32_t name_crc;
int ret;
dbg_gc("gcollect_deletion_dirent\n");
/* Check node. */
name_len = strlen(fd->name);
name_crc = crc32(0, fd->name, name_len);
nref_len = chfs_nref_len(chmp, cheb, fd->nref);
(void)chfs_vnode_lookup(chmp, fd->vno);
/* Find it in parent dirents. */
for (nref = parent->chvc->dirents;
nref != (void*)parent->chvc;
nref = nref->nref_next) {
if (!CHFS_REF_OBSOLETE(nref))
continue;
/* if node refs have different length, skip */
if (chfs_nref_len(chmp, NULL, nref) != nref_len)
continue;
if (CHFS_GET_OFS(nref->nref_offset) ==
CHFS_GET_OFS(fd->nref->nref_offset)) {
continue;
}
/* read it from flash */
ret = chfs_read_leb(chmp,
nref->nref_lnr, (void*)&chfdn, CHFS_GET_OFS(nref->nref_offset),
nref_len, &retlen);
if (ret) {
dbg_gc("Read error: %d\n", ret);
continue;
}
if (retlen != nref_len) {
dbg_gc("Error reading node:"
" read: %zu insted of: %zu\n", retlen, nref_len);
continue;
}
/* if node type doesn't match, skip */
if (le16toh(chfdn.type) != CHFS_NODETYPE_DIRENT)
continue;
/* if crc doesn't match, skip */
if (le32toh(chfdn.name_crc) != name_crc)
continue;
/* if length of name different, or this is an another deletion
* dirent, skip
*/
if (chfdn.nsize != name_len || !le64toh(chfdn.vno))
continue;
/* check actual name */
if (memcmp(chfdn.name, fd->name, name_len))
continue;
mutex_enter(&chmp->chm_lock_vnocache);
chfs_remove_and_obsolete(chmp, parent->chvc, fd->nref,
&parent->chvc->dirents);
mutex_exit(&chmp->chm_lock_vnocache);
return chfs_write_flash_dirent(chmp,
parent, NULL, fd, fd->vno, ALLOC_GC);
}
/* Simply remove it from the parent dirents. */
TAILQ_REMOVE(&parent->dents, fd, fds);
chfs_free_dirent(fd);
return 0;
}
/* chfs_gcollect_dnode - */
int
chfs_gcollect_dnode(struct chfs_mount *chmp,
struct chfs_eraseblock *orig_cheb, struct chfs_inode *ip,
struct chfs_full_dnode *fn, uint32_t orig_start, uint32_t orig_end)
{
struct chfs_node_ref *nref;
struct chfs_full_dnode *newfn;
struct chfs_flash_data_node *fdnode;
int ret = 0, retries = 0;
uint32_t totlen;
char *data = NULL;
struct iovec vec;
size_t retlen;
dbg_gc("gcollect_dnode\n");
//TODO merge frags
KASSERT(orig_cheb->lnr == fn->nref->nref_lnr);
totlen = chfs_nref_len(chmp, orig_cheb, fn->nref);
data = kmem_alloc(totlen, KM_SLEEP);
/* Read the node from the flash. */
ret = chfs_read_leb(chmp, fn->nref->nref_lnr, data, fn->nref->nref_offset,
totlen, &retlen);
fdnode = (struct chfs_flash_data_node *)data;
fdnode->version = htole64(++ip->chvc->highest_version);
fdnode->node_crc = htole32(crc32(0, (uint8_t *)fdnode,
sizeof(*fdnode) - 4));
vec.iov_base = (void *)data;
vec.iov_len = totlen;
retry:
/* Set the next block where we can write. */
ret = chfs_reserve_space_gc(chmp, totlen);
if (ret)
goto out;
nref = chfs_alloc_node_ref(chmp->chm_nextblock);
if (!nref) {
ret = ENOMEM;
goto out;
}
mutex_enter(&chmp->chm_lock_sizes);
nref->nref_offset = chmp->chm_ebh->eb_size - chmp->chm_nextblock->free_size;
KASSERT(nref->nref_offset % 4 == 0);
chfs_change_size_free(chmp, chmp->chm_nextblock, -totlen);
/* Write it to the writebuffer. */
ret = chfs_write_wbuf(chmp, &vec, 1, nref->nref_offset, &retlen);
if (ret || retlen != totlen) {
/* error during writing */
chfs_err("error while writing out to the media\n");
chfs_err("err: %d | size: %d | retlen : %zu\n",
ret, totlen, retlen);
chfs_change_size_dirty(chmp, chmp->chm_nextblock, totlen);
if (retries) {
ret = EIO;
mutex_exit(&chmp->chm_lock_sizes);
goto out;
}
/* try again */
retries++;
mutex_exit(&chmp->chm_lock_sizes);
goto retry;
}
dbg_gc("new nref lnr: %u - offset: %u\n", nref->nref_lnr, nref->nref_offset);
chfs_change_size_used(chmp, &chmp->chm_blocks[nref->nref_lnr], totlen);
mutex_exit(&chmp->chm_lock_sizes);
KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
/* Set fields of the new node. */
newfn = chfs_alloc_full_dnode();
newfn->nref = nref;
newfn->ofs = fn->ofs;
newfn->size = fn->size;
newfn->frags = 0;
mutex_enter(&chmp->chm_lock_vnocache);
/* Remove every part of the old node. */
chfs_remove_frags_of_node(chmp, &ip->fragtree, fn->nref);
chfs_remove_and_obsolete(chmp, ip->chvc, fn->nref, &ip->chvc->dnode);
/* Add the new nref to inode. */
chfs_add_full_dnode_to_inode(chmp, ip, newfn);
chfs_add_node_to_list(chmp,
ip->chvc, newfn->nref, &ip->chvc->dnode);
mutex_exit(&chmp->chm_lock_vnocache);
out:
kmem_free(data, totlen);
return ret;
}