0165662cd9
This allowed removing the p_flagarlm timer from the kernel's process table. Furthermore, I merged p_syncalrm and p_signalrm into p_alarm_timer to save even more space. Note that processes can no longer have both a signal and synchronous alarm timer outstanding as of now.
145 lines
6.2 KiB
C
Executable file
145 lines
6.2 KiB
C
Executable file
#ifndef PROC_H
|
|
#define PROC_H
|
|
|
|
/* Here is the declaration of the process table. It contains the process'
|
|
* registers, memory map, accounting, and message send/receive information.
|
|
* Many assembly code routines reference fields in it. The offsets to these
|
|
* fields are defined in the assembler include file sconst.h. When changing
|
|
* 'proc', be sure to change sconst.h to match.
|
|
*
|
|
* Changes:
|
|
* May 24, 2005 new field for pending notifications (Jorrit N. Herder)
|
|
* Nov 10, 2004 separated process types/ priorities (Jorrit N. Herder)
|
|
* Sep 24, 2004 one timer per type of alarm (Jorrit N. Herder)
|
|
* May 01, 2004 new p_sendmask to protect syscalls (Jorrit N. Herder)
|
|
*/
|
|
#include <minix/com.h>
|
|
#include "protect.h"
|
|
#include "const.h"
|
|
|
|
struct proc {
|
|
struct stackframe_s p_reg; /* process' registers saved in stack frame */
|
|
|
|
#if (CHIP == INTEL)
|
|
reg_t p_ldt_sel; /* selector in gdt with ldt base and limit */
|
|
struct segdesc_s p_ldt[2+NR_REMOTE_SEGS]; /* CS, DS and remote segments */
|
|
#endif /* (CHIP == INTEL) */
|
|
|
|
#if (CHIP == M68000)
|
|
/* M68000 specific registers and FPU details go here. */
|
|
#endif /* (CHIP == M68000) */
|
|
|
|
reg_t *p_stguard; /* stack guard word */
|
|
|
|
proc_nr_t p_nr; /* number of this process (for fast access) */
|
|
struct mem_map p_memmap[NR_LOCAL_SEGS]; /* local memory map (T, D, S) */
|
|
struct far_mem p_farmem[NR_REMOTE_SEGS]; /* remote memory map */
|
|
|
|
char p_flags; /* SENDING, RECEIVING, etc. */
|
|
char p_type; /* task, system, driver, server, user, idle */
|
|
char p_priority; /* scheduling priority */
|
|
char p_call_mask; /* bit map with allowed system call traps */
|
|
|
|
send_mask_t p_sendmask; /* mask indicating to whom proc may send */
|
|
|
|
clock_t p_user_time; /* user time in ticks */
|
|
clock_t p_sys_time; /* sys time in ticks */
|
|
|
|
struct proc *p_nextready; /* pointer to next ready process */
|
|
struct notification *p_ntf_q; /* queue of pending notifications */
|
|
struct proc *p_caller_q; /* head of list of procs wishing to send */
|
|
struct proc *p_q_link; /* link to next proc wishing to send */
|
|
message *p_messbuf; /* pointer to passed message buffer */
|
|
proc_nr_t p_getfrom; /* from whom does process want to receive? */
|
|
proc_nr_t p_sendto; /* to whom does process want to send? */
|
|
|
|
timer_t p_alarm_timer; /* timer shared by different alarm types */
|
|
sigset_t p_pending; /* bit map for pending kernel signals */
|
|
unsigned p_pendcount; /* count of pending and unfinished signals */
|
|
|
|
char p_name[P_NAME_LEN]; /* name of the process, including \0 */
|
|
|
|
#if ENABLE_K_DEBUGGING
|
|
int p_ready, p_found;
|
|
#endif
|
|
};
|
|
|
|
/* Guard word for task stacks. */
|
|
#define STACK_GUARD ((reg_t) (sizeof(reg_t) == 2 ? 0xBEEF : 0xDEADBEEF))
|
|
|
|
/* Bits for p_flags in proc[]. A process is runnable iff p_flags == 0. */
|
|
#define NO_MAP 0x01 /* keeps unmapped forked child from running */
|
|
#define SENDING 0x02 /* process blocked trying to SEND */
|
|
#define RECEIVING 0x04 /* process blocked trying to RECEIVE */
|
|
#define PENDING 0x10 /* set when inform() of signal pending */
|
|
#define SIG_PENDING 0x20 /* keeps to-be-signalled proc from running */
|
|
#define P_STOP 0x40 /* set when process is being traced */
|
|
|
|
/* Values for p_type. Non-negative values represent active process types.
|
|
* Process types are important to model inter-process relationships. When
|
|
* MINIX is shutdown, all system services are notified in order of possible
|
|
* dependencies, so that, e.g., the FS can rely on drivers to synchronize.
|
|
*/
|
|
#define P_RESERVED -2 /* slot is not in use, but reserved */
|
|
#define P_NONE -1 /* slot is not in use, and free */
|
|
#define P_TASK 0 /* kernel process */
|
|
#define P_SYSTEM 1 /* low-level system service */
|
|
#define P_DRIVER 2 /* device driver */
|
|
#define P_SERVER 3 /* system service outside the kernel */
|
|
#define P_USER 4 /* user process */
|
|
#define P_IDLE 5 /* idle process */
|
|
|
|
/* Scheduling priorities for p_priority. Values must start at zero and
|
|
* increment. Priorities of system services can be set in the task table.
|
|
* Task, user, and idle priorities are fixed; the rest can be selected.
|
|
*/
|
|
#define PPRI_TASK 0 /* reserved for kernel tasks */
|
|
#define PPRI_HIGHER 1
|
|
#define PPRI_HIGH 2
|
|
#define PPRI_NORMAL 3
|
|
#define PPRI_LOW 4
|
|
#define PPRI_LOWER 5
|
|
#define PPRI_USER 6 /* reserved for user processes */
|
|
#define PPRI_IDLE 7 /* only IDLE process goes here */
|
|
|
|
#define NR_SCHED_QUEUES 8 /* MUST equal minimum priority + 1 */
|
|
|
|
/* Magic process table addresses. */
|
|
#define BEG_PROC_ADDR (&proc[0])
|
|
#define BEG_USER_ADDR (&proc[NR_TASKS])
|
|
#define END_PROC_ADDR (&proc[NR_TASKS + NR_PROCS])
|
|
|
|
#define NIL_PROC ((struct proc *) 0)
|
|
#define isidlehardware(n) ((n) == IDLE || (n) == HARDWARE)
|
|
#define isokprocn(n) ((unsigned) ((n) + NR_TASKS) < NR_PROCS + NR_TASKS)
|
|
#define isokprocp(p) ((p) >= BEG_PROC_ADDR && (p) < END_PROC_ADDR)
|
|
#define isoksrc_dst(n) (isokprocn(n) || (n) == ANY)
|
|
#define isalive(n) (proc_addr(n)->p_type > P_NONE)
|
|
#define isalivep(p) ((p)->p_type > P_NONE)
|
|
#define isrxhardware(n) ((n) == ANY || (n) == HARDWARE)
|
|
#define isreservedp(p) ((p)->p_type == P_RESERVED)
|
|
#define isemptyp(p) ((p)->p_type == P_NONE)
|
|
#define istaskp(p) ((p)->p_type == P_TASK)
|
|
#define isdriverp(p) ((p)->p_type == P_DRIVER)
|
|
#define isserverp(p) ((p)->p_type == P_SERVER)
|
|
#define isuserp(p) ((p)->p_type == P_USER)
|
|
#define isuser(n) (proc_addr(n)->p_type == P_USER)
|
|
#define isidlep(p) ((p)->p_type == P_IDLE)
|
|
#define cproc_addr(n) (&(proc + NR_TASKS)[(n)])
|
|
#define proc_addr(n) (pproc_addr + NR_TASKS)[(n)]
|
|
#define proc_nr(p) ((p)->p_nr)
|
|
#define iskernelp(p) ((p)->p_nr < 0)
|
|
#define iskernel(n) ((n) == CLOCK || (n) == SYSTASK)
|
|
|
|
/* The process table and pointers to process table slots. The pointers allow
|
|
* faster access because now a process entry can be found by indexing the
|
|
* pproc_addr array, while accessing an element i requires a multiplication
|
|
* with sizeof(struct proc) to determine the address.
|
|
*/
|
|
EXTERN struct proc proc[NR_TASKS + NR_PROCS]; /* process table */
|
|
EXTERN struct proc *pproc_addr[NR_TASKS + NR_PROCS];
|
|
EXTERN struct proc *bill_ptr; /* ptr to process to bill for clock ticks */
|
|
EXTERN struct proc *rdy_head[NR_SCHED_QUEUES]; /* ptrs to ready list headers */
|
|
EXTERN struct proc *rdy_tail[NR_SCHED_QUEUES]; /* ptrs to ready list tails */
|
|
|
|
#endif /* PROC_H */
|