b5179d7025
the real work can be called from elsewhere too. Specifically, to allow PM its own brk().
192 lines
7.1 KiB
C
192 lines
7.1 KiB
C
/* The MINIX model of memory allocation reserves a fixed amount of memory for
|
|
* the combined text, data, and stack segments. The amount used for a child
|
|
* process created by FORK is the same as the parent had. If the child does
|
|
* an EXEC later, the new size is taken from the header of the file EXEC'ed.
|
|
*
|
|
* The layout in memory consists of the text segment, followed by the data
|
|
* segment, followed by a gap (unused memory), followed by the stack segment.
|
|
* The data segment grows upward and the stack grows downward, so each can
|
|
* take memory from the gap. If they meet, the process must be killed. The
|
|
* procedures in this file deal with the growth of the data and stack segments.
|
|
*
|
|
* The entry points into this file are:
|
|
* do_brk: BRK/SBRK system calls to grow or shrink the data segment
|
|
* adjust: see if a proposed segment adjustment is allowed
|
|
* size_ok: see if the segment sizes are feasible (i86 only)
|
|
*/
|
|
|
|
#include "pm.h"
|
|
#include <signal.h>
|
|
#include "mproc.h"
|
|
#include "param.h"
|
|
|
|
#define DATA_CHANGED 1 /* flag value when data segment size changed */
|
|
#define STACK_CHANGED 2 /* flag value when stack size changed */
|
|
|
|
/*===========================================================================*
|
|
* do_brk *
|
|
*===========================================================================*/
|
|
PUBLIC int do_brk()
|
|
{
|
|
/* Entry point to brk(addr) system call. real_brk() does the real work,
|
|
* as that is called from elsewhere too.
|
|
*/
|
|
int r;
|
|
r = real_brk(mp, (vir_bytes) m_in.addr);
|
|
mp->mp_reply.reply_ptr = (r == OK ? m_in.addr : (char *) -1);
|
|
return r;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_brk *
|
|
*===========================================================================*/
|
|
PUBLIC int real_brk(struct mproc *rmp, vir_bytes v)
|
|
{
|
|
/* Perform the brk(addr) system call.
|
|
*
|
|
* The call is complicated by the fact that on some machines (e.g., 8088),
|
|
* the stack pointer can grow beyond the base of the stack segment without
|
|
* anybody noticing it.
|
|
* The parameter, 'addr' is the new virtual address in D space.
|
|
*
|
|
* This call can also be performed on PM itself from brk() in misc.c.
|
|
*/
|
|
int r;
|
|
vir_bytes new_sp;
|
|
vir_clicks new_clicks;
|
|
|
|
new_clicks = (vir_clicks) ( ((long) v + CLICK_SIZE - 1) >> CLICK_SHIFT);
|
|
if (new_clicks < rmp->mp_seg[D].mem_vir) {
|
|
rmp->mp_reply.reply_ptr = (char *) -1;
|
|
return(ENOMEM);
|
|
}
|
|
new_clicks -= rmp->mp_seg[D].mem_vir;
|
|
if ((r=get_stack_ptr(rmp->mp_endpoint, &new_sp)) != OK) /* get sp value */
|
|
panic(__FILE__,"couldn't get stack pointer", r);
|
|
r = adjust(rmp, new_clicks, new_sp);
|
|
return(r); /* return new address or -1 */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* adjust *
|
|
*===========================================================================*/
|
|
PUBLIC int adjust(rmp, data_clicks, sp)
|
|
register struct mproc *rmp; /* whose memory is being adjusted? */
|
|
vir_clicks data_clicks; /* how big is data segment to become? */
|
|
vir_bytes sp; /* new value of sp */
|
|
{
|
|
/* See if data and stack segments can coexist, adjusting them if need be.
|
|
* Memory is never allocated or freed. Instead it is added or removed from the
|
|
* gap between data segment and stack segment. If the gap size becomes
|
|
* negative, the adjustment of data or stack fails and ENOMEM is returned.
|
|
*/
|
|
|
|
register struct mem_map *mem_sp, *mem_dp;
|
|
vir_clicks sp_click, gap_base, lower, old_clicks;
|
|
int changed, r, ft;
|
|
long base_of_stack, delta; /* longs avoid certain problems */
|
|
|
|
mem_dp = &rmp->mp_seg[D]; /* pointer to data segment map */
|
|
mem_sp = &rmp->mp_seg[S]; /* pointer to stack segment map */
|
|
changed = 0; /* set when either segment changed */
|
|
|
|
/* See if stack size has gone negative (i.e., sp too close to 0xFFFF...) */
|
|
base_of_stack = (long) mem_sp->mem_vir + (long) mem_sp->mem_len;
|
|
sp_click = sp >> CLICK_SHIFT; /* click containing sp */
|
|
if (sp_click >= base_of_stack)
|
|
{
|
|
return(ENOMEM); /* sp too high */
|
|
}
|
|
|
|
/* Compute size of gap between stack and data segments. */
|
|
delta = (long) mem_sp->mem_vir - (long) sp_click;
|
|
lower = (delta > 0 ? sp_click : mem_sp->mem_vir);
|
|
|
|
/* Add a safety margin for future stack growth. Impossible to do right. */
|
|
#define SAFETY_BYTES (384 * sizeof(char *))
|
|
#define SAFETY_CLICKS ((SAFETY_BYTES + CLICK_SIZE - 1) / CLICK_SIZE)
|
|
gap_base = mem_dp->mem_vir + data_clicks + SAFETY_CLICKS;
|
|
if (lower < gap_base)
|
|
{
|
|
return(ENOMEM); /* data and stack collided */
|
|
}
|
|
|
|
/* Update data length (but not data orgin) on behalf of brk() system call. */
|
|
old_clicks = mem_dp->mem_len;
|
|
if (data_clicks != mem_dp->mem_len) {
|
|
mem_dp->mem_len = data_clicks;
|
|
changed |= DATA_CHANGED;
|
|
}
|
|
|
|
/* Update stack length and origin due to change in stack pointer. */
|
|
if (delta > 0) {
|
|
mem_sp->mem_vir -= delta;
|
|
mem_sp->mem_phys -= delta;
|
|
mem_sp->mem_len += delta;
|
|
changed |= STACK_CHANGED;
|
|
}
|
|
|
|
/* Do the new data and stack segment sizes fit in the address space? */
|
|
ft = (rmp->mp_flags & SEPARATE);
|
|
#if (CHIP == INTEL && _WORD_SIZE == 2)
|
|
r = size_ok(ft, rmp->mp_seg[T].mem_len, rmp->mp_seg[D].mem_len,
|
|
rmp->mp_seg[S].mem_len, rmp->mp_seg[D].mem_vir, rmp->mp_seg[S].mem_vir);
|
|
#else
|
|
r = (rmp->mp_seg[D].mem_vir + rmp->mp_seg[D].mem_len >
|
|
rmp->mp_seg[S].mem_vir) ? ENOMEM : OK;
|
|
#endif
|
|
if (r == OK) {
|
|
int r2;
|
|
if (changed && (r2=sys_newmap(rmp->mp_endpoint, rmp->mp_seg)) != OK)
|
|
panic(__FILE__,"couldn't sys_newmap in adjust", r2);
|
|
return(OK);
|
|
}
|
|
|
|
/* New sizes don't fit or require too many page/segment registers. Restore.*/
|
|
if (changed & DATA_CHANGED) mem_dp->mem_len = old_clicks;
|
|
if (changed & STACK_CHANGED) {
|
|
mem_sp->mem_vir += delta;
|
|
mem_sp->mem_phys += delta;
|
|
mem_sp->mem_len -= delta;
|
|
}
|
|
return(ENOMEM);
|
|
}
|
|
|
|
#if (CHIP == INTEL && _WORD_SIZE == 2)
|
|
/*===========================================================================*
|
|
* size_ok *
|
|
*===========================================================================*/
|
|
PUBLIC int size_ok(file_type, tc, dc, sc, dvir, s_vir)
|
|
int file_type; /* SEPARATE or 0 */
|
|
vir_clicks tc; /* text size in clicks */
|
|
vir_clicks dc; /* data size in clicks */
|
|
vir_clicks sc; /* stack size in clicks */
|
|
vir_clicks dvir; /* virtual address for start of data seg */
|
|
vir_clicks s_vir; /* virtual address for start of stack seg */
|
|
{
|
|
/* Check to see if the sizes are feasible and enough segmentation registers
|
|
* exist. On a machine with eight 8K pages, text, data, stack sizes of
|
|
* (32K, 16K, 16K) will fit, but (33K, 17K, 13K) will not, even though the
|
|
* former is bigger (64K) than the latter (63K). Even on the 8088 this test
|
|
* is needed, since the data and stack may not exceed 4096 clicks.
|
|
* Note this is not used for 32-bit Intel Minix, the test is done in-line.
|
|
*/
|
|
|
|
int pt, pd, ps; /* segment sizes in pages */
|
|
|
|
pt = ( (tc << CLICK_SHIFT) + PAGE_SIZE - 1)/PAGE_SIZE;
|
|
pd = ( (dc << CLICK_SHIFT) + PAGE_SIZE - 1)/PAGE_SIZE;
|
|
ps = ( (sc << CLICK_SHIFT) + PAGE_SIZE - 1)/PAGE_SIZE;
|
|
|
|
if (file_type == SEPARATE) {
|
|
if (pt > MAX_PAGES || pd + ps > MAX_PAGES) return(ENOMEM);
|
|
} else {
|
|
if (pt + pd + ps > MAX_PAGES) return(ENOMEM);
|
|
}
|
|
|
|
if (dvir + dc > s_vir) return(ENOMEM);
|
|
|
|
return(OK);
|
|
}
|
|
#endif
|
|
|