992799b91f
By decoupling synchronous drivers from VFS, we are a big step closer to supporting driver crashes under all circumstances. That is, VFS can't become stuck on IPC with a synchronous driver (e.g., INET) and can recover from crashing block drivers during open/close/ioctl or during communication with an FS. In order to maintain serialized communication with a synchronous driver, the communication is wrapped by a mutex on a per driver basis (not major numbers as there can be multiple majors with identical endpoints). Majors that share a driver endpoint point to a single mutex object. In order to support crashes from block drivers, the file reopen tactic had to be changed; first reopen files associated with the crashed driver, then send the new driver endpoint to FSes. This solves a deadlock between the FS and the block driver; - VFS would send REQ_NEW_DRIVER to an FS, but he FS only receives it after retrying the current request to the newly started driver. - The block driver would refuse the retried request until all files had been reopened. - VFS would reopen files only after getting a reply from the initial REQ_NEW_DRIVER. When a character special driver crashes, all associated files have to be marked invalid and closed (or reopened if flagged as such). However, they can only be closed if a thread holds exclusive access to it. To obtain exclusive access, the worker thread (which handles the new driver endpoint event from DS) schedules a new job to garbage collect invalid files. This way, we can signal the worker thread that was talking to the crashed driver and will release exclusive access to a file associated with the crashed driver and prevent the garbage collecting worker thread from dead locking on that file. Also, when a character special driver crashes, RS will unmap the driver and remap it upon restart. During unmapping, associated files are marked invalid instead of waiting for an endpoint up event from DS, as that event might come later than new read/write/select requests and thus cause confusion in the freshly started driver. When locking a filp, the usage counters are no longer checked. The usage counter can legally go down to zero during filp invalidation while there are locks pending. DS events are handled by a separate worker thread instead of the main thread as reopening files could lead to another crash and a stuck thread. An additional worker thread is then necessary to unlock it. Finally, with everything asynchronous a race condition in do_select surfaced. A select entry was only marked in use after succesfully sending initial select requests to drivers and having to wait. When multiple select() calls were handled there was opportunity that these entries were overwritten. This had as effect that some select results were ignored (and select() remained blocking instead if returning) or do_select tried to access filps that were not present (because thrown away by secondary select()). This bug manifested itself with sendrecs, but was very hard to reproduce. However, it became awfully easy to trigger with asynsends only.
343 lines
8.7 KiB
C
343 lines
8.7 KiB
C
/* This file contains the heart of the mechanism used to read (and write)
|
|
* files. Read and write requests are split up into chunks that do not cross
|
|
* block boundaries. Each chunk is then processed in turn. Reads on special
|
|
* files are also detected and handled.
|
|
*
|
|
* The entry points into this file are
|
|
* do_read: perform the READ system call by calling read_write
|
|
* do_getdents: read entries from a directory (GETDENTS)
|
|
* read_write: actually do the work of READ and WRITE
|
|
*
|
|
*/
|
|
|
|
#include "fs.h"
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <minix/com.h>
|
|
#include <minix/u64.h>
|
|
#include "file.h"
|
|
#include "fproc.h"
|
|
#include "scratchpad.h"
|
|
#include "param.h"
|
|
#include <dirent.h>
|
|
#include <assert.h>
|
|
#include <minix/vfsif.h>
|
|
#include "vnode.h"
|
|
#include "vmnt.h"
|
|
|
|
|
|
/*===========================================================================*
|
|
* do_read *
|
|
*===========================================================================*/
|
|
int do_read()
|
|
{
|
|
return(do_read_write(READING));
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* lock_bsf *
|
|
*===========================================================================*/
|
|
void lock_bsf(void)
|
|
{
|
|
struct fproc *org_fp;
|
|
struct worker_thread *org_self;
|
|
|
|
if (mutex_trylock(&bsf_lock) == 0)
|
|
return;
|
|
|
|
org_fp = fp;
|
|
org_self = self;
|
|
|
|
if (mutex_lock(&bsf_lock) != 0)
|
|
panic("unable to lock block special file lock");
|
|
|
|
fp = org_fp;
|
|
self = org_self;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* unlock_bsf *
|
|
*===========================================================================*/
|
|
void unlock_bsf(void)
|
|
{
|
|
if (mutex_unlock(&bsf_lock) != 0)
|
|
panic("failed to unlock block special file lock");
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_read_write *
|
|
*===========================================================================*/
|
|
int do_read_write(rw_flag)
|
|
int rw_flag; /* READING or WRITING */
|
|
{
|
|
/* Perform read(fd, buffer, nbytes) or write(fd, buffer, nbytes) call. */
|
|
struct filp *f;
|
|
tll_access_t locktype;
|
|
int r;
|
|
|
|
scratch(fp).file.fd_nr = job_m_in.fd;
|
|
scratch(fp).io.io_buffer = job_m_in.buffer;
|
|
scratch(fp).io.io_nbytes = (size_t) job_m_in.nbytes;
|
|
|
|
locktype = (rw_flag == READING) ? VNODE_READ : VNODE_WRITE;
|
|
if ((f = get_filp(scratch(fp).file.fd_nr, locktype)) == NULL)
|
|
return(err_code);
|
|
if (((f->filp_mode) & (rw_flag == READING ? R_BIT : W_BIT)) == 0) {
|
|
unlock_filp(f);
|
|
return(f->filp_mode == FILP_CLOSED ? EIO : EBADF);
|
|
}
|
|
if (scratch(fp).io.io_nbytes == 0) {
|
|
unlock_filp(f);
|
|
return(0); /* so char special files need not check for 0*/
|
|
}
|
|
|
|
r = read_write(rw_flag, f, scratch(fp).io.io_buffer, scratch(fp).io.io_nbytes,
|
|
who_e);
|
|
|
|
unlock_filp(f);
|
|
return(r);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* read_write *
|
|
*===========================================================================*/
|
|
int read_write(int rw_flag, struct filp *f, char *buf, size_t size,
|
|
endpoint_t for_e)
|
|
{
|
|
register struct vnode *vp;
|
|
u64_t position, res_pos, new_pos;
|
|
unsigned int cum_io, cum_io_incr, res_cum_io;
|
|
int op, oflags, r;
|
|
|
|
position = f->filp_pos;
|
|
oflags = f->filp_flags;
|
|
vp = f->filp_vno;
|
|
r = OK;
|
|
cum_io = 0;
|
|
|
|
if (size > SSIZE_MAX) return(EINVAL);
|
|
|
|
if (S_ISFIFO(vp->v_mode)) {
|
|
if (fp->fp_cum_io_partial != 0) {
|
|
panic("VFS: read_write: fp_cum_io_partial not clear");
|
|
}
|
|
r = rw_pipe(rw_flag, for_e, f, buf, size);
|
|
return(r);
|
|
}
|
|
|
|
op = (rw_flag == READING ? VFS_DEV_READ : VFS_DEV_WRITE);
|
|
|
|
if (S_ISCHR(vp->v_mode)) { /* Character special files. */
|
|
dev_t dev;
|
|
int suspend_reopen;
|
|
|
|
if (vp->v_sdev == NO_DEV)
|
|
panic("VFS: read_write tries to access char dev NO_DEV");
|
|
|
|
suspend_reopen = (f->filp_state & FS_NEEDS_REOPEN);
|
|
dev = (dev_t) vp->v_sdev;
|
|
|
|
r = dev_io(op, dev, for_e, buf, position, size, oflags,
|
|
suspend_reopen);
|
|
if (r >= 0) {
|
|
cum_io = r;
|
|
position = add64ul(position, r);
|
|
r = OK;
|
|
}
|
|
} else if (S_ISBLK(vp->v_mode)) { /* Block special files. */
|
|
if (vp->v_sdev == NO_DEV)
|
|
panic("VFS: read_write tries to access block dev NO_DEV");
|
|
|
|
lock_bsf();
|
|
|
|
r = req_breadwrite(vp->v_bfs_e, for_e, vp->v_sdev, position, size,
|
|
buf, rw_flag, &res_pos, &res_cum_io);
|
|
if (r == OK) {
|
|
position = res_pos;
|
|
cum_io += res_cum_io;
|
|
}
|
|
|
|
unlock_bsf();
|
|
} else { /* Regular files */
|
|
if (rw_flag == WRITING) {
|
|
/* Check for O_APPEND flag. */
|
|
if (oflags & O_APPEND) position = cvul64(vp->v_size);
|
|
}
|
|
|
|
/* Issue request */
|
|
r = req_readwrite(vp->v_fs_e, vp->v_inode_nr, position, rw_flag, for_e,
|
|
buf, size, &new_pos, &cum_io_incr);
|
|
|
|
if (r >= 0) {
|
|
if (ex64hi(new_pos))
|
|
panic("read_write: bad new pos");
|
|
|
|
position = new_pos;
|
|
cum_io += cum_io_incr;
|
|
}
|
|
}
|
|
|
|
/* On write, update file size and access time. */
|
|
if (rw_flag == WRITING) {
|
|
if (S_ISREG(vp->v_mode) || S_ISDIR(vp->v_mode)) {
|
|
if (cmp64ul(position, vp->v_size) > 0) {
|
|
if (ex64hi(position) != 0) {
|
|
panic("read_write: file size too big ");
|
|
}
|
|
vp->v_size = ex64lo(position);
|
|
}
|
|
}
|
|
}
|
|
|
|
f->filp_pos = position;
|
|
|
|
if (r == OK) return(cum_io);
|
|
return(r);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_getdents *
|
|
*===========================================================================*/
|
|
int do_getdents()
|
|
{
|
|
/* Perform the getdents(fd, buf, size) system call. */
|
|
int r = OK;
|
|
u64_t new_pos;
|
|
register struct filp *rfilp;
|
|
|
|
scratch(fp).file.fd_nr = job_m_in.fd;
|
|
scratch(fp).io.io_buffer = job_m_in.buffer;
|
|
scratch(fp).io.io_nbytes = (size_t) job_m_in.nbytes;
|
|
|
|
/* Is the file descriptor valid? */
|
|
if ( (rfilp = get_filp(scratch(fp).file.fd_nr, VNODE_READ)) == NULL)
|
|
return(err_code);
|
|
|
|
if (!(rfilp->filp_mode & R_BIT))
|
|
r = EBADF;
|
|
else if (!S_ISDIR(rfilp->filp_vno->v_mode))
|
|
r = EBADF;
|
|
|
|
if (r == OK) {
|
|
if (ex64hi(rfilp->filp_pos) != 0)
|
|
panic("do_getdents: can't handle large offsets");
|
|
|
|
r = req_getdents(rfilp->filp_vno->v_fs_e, rfilp->filp_vno->v_inode_nr,
|
|
rfilp->filp_pos, scratch(fp).io.io_buffer,
|
|
scratch(fp).io.io_nbytes, &new_pos,0);
|
|
|
|
if (r > 0) rfilp->filp_pos = new_pos;
|
|
}
|
|
|
|
unlock_filp(rfilp);
|
|
return(r);
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* rw_pipe *
|
|
*===========================================================================*/
|
|
int rw_pipe(rw_flag, usr_e, f, buf, req_size)
|
|
int rw_flag; /* READING or WRITING */
|
|
endpoint_t usr_e;
|
|
struct filp *f;
|
|
char *buf;
|
|
size_t req_size;
|
|
{
|
|
int r, oflags, partial_pipe = 0;
|
|
size_t size, cum_io, cum_io_incr;
|
|
struct vnode *vp;
|
|
u64_t position, new_pos;
|
|
|
|
/* Must make sure we're operating on locked filp and vnode */
|
|
assert(tll_islocked(&f->filp_vno->v_lock));
|
|
assert(mutex_trylock(&f->filp_lock) == -EDEADLK);
|
|
|
|
oflags = f->filp_flags;
|
|
vp = f->filp_vno;
|
|
position = cvu64((rw_flag == READING) ? vp->v_pipe_rd_pos :
|
|
vp->v_pipe_wr_pos);
|
|
/* fp->fp_cum_io_partial is only nonzero when doing partial writes */
|
|
cum_io = fp->fp_cum_io_partial;
|
|
|
|
r = pipe_check(vp, rw_flag, oflags, req_size, position, 0);
|
|
if (r <= 0) {
|
|
if (r == SUSPEND) pipe_suspend(f, buf, req_size);
|
|
return(r);
|
|
}
|
|
|
|
size = r;
|
|
if (size < req_size) partial_pipe = 1;
|
|
|
|
/* Truncate read request at size. */
|
|
if((rw_flag == READING) &&
|
|
cmp64ul(add64ul(position, size), vp->v_size) > 0) {
|
|
/* Position always should fit in an off_t (LONG_MAX). */
|
|
off_t pos32;
|
|
|
|
assert(cmp64ul(position, LONG_MAX) <= 0);
|
|
pos32 = cv64ul(position);
|
|
assert(pos32 >= 0);
|
|
assert(pos32 <= LONG_MAX);
|
|
size = vp->v_size - pos32;
|
|
}
|
|
|
|
if (vp->v_mapfs_e == 0)
|
|
panic("unmapped pipe");
|
|
|
|
r = req_readwrite(vp->v_mapfs_e, vp->v_mapinode_nr, position, rw_flag, usr_e,
|
|
buf, size, &new_pos, &cum_io_incr);
|
|
|
|
if (r >= 0) {
|
|
if (ex64hi(new_pos))
|
|
panic("rw_pipe: bad new pos");
|
|
|
|
position = new_pos;
|
|
cum_io += cum_io_incr;
|
|
buf += cum_io_incr;
|
|
req_size -= cum_io_incr;
|
|
}
|
|
|
|
/* On write, update file size and access time. */
|
|
if (rw_flag == WRITING) {
|
|
if (cmp64ul(position, vp->v_size) > 0) {
|
|
if (ex64hi(position) != 0) {
|
|
panic("read_write: file size too big for v_size");
|
|
}
|
|
vp->v_size = ex64lo(position);
|
|
}
|
|
} else {
|
|
if (cmp64ul(position, vp->v_size) >= 0) {
|
|
/* Reset pipe pointers */
|
|
vp->v_size = 0;
|
|
vp->v_pipe_rd_pos= 0;
|
|
vp->v_pipe_wr_pos= 0;
|
|
position = cvu64(0);
|
|
}
|
|
}
|
|
|
|
if (rw_flag == READING)
|
|
vp->v_pipe_rd_pos= cv64ul(position);
|
|
else
|
|
vp->v_pipe_wr_pos= cv64ul(position);
|
|
|
|
if (r == OK) {
|
|
if (partial_pipe) {
|
|
/* partial write on pipe with */
|
|
/* O_NONBLOCK, return write count */
|
|
if (!(oflags & O_NONBLOCK)) {
|
|
/* partial write on pipe with req_size > PIPE_SIZE,
|
|
* non-atomic
|
|
*/
|
|
fp->fp_cum_io_partial = cum_io;
|
|
pipe_suspend(f, buf, req_size);
|
|
return(SUSPEND);
|
|
}
|
|
}
|
|
fp->fp_cum_io_partial = 0;
|
|
return(cum_io);
|
|
}
|
|
|
|
return(r);
|
|
}
|